JlociiKeHHS TOLIIbHOCTI BIIPOBAJIPKEHHS KOHIICIILII1

Internet of Everything B rany3b BuUIlOi OCBITH B YKpaiHi

Coxkomnenko II. 1O.

HaykoBui kepiBHuK: Konpan T. L.

Kadenpa imxenepii nmporpamMHoro 3ade3nedeHHs,
HaBuanpHO-HayKOBHI iHCTUTYT KOMIT FOTEPHHX 1H()OPMAIiTHUX TXHOIJIOTIH,
HarmionansHuit aBianiiiHuid yHiBepCHTET,

KuiB, Ykpaina
sokolenko.py@gmail.com

Anomauyia — po0doTa NpPHCBAYEHA BIPOBAKEHHIO
rxonuenuii Internet of Everything y ramyss Buuioi ocsitu
B YkpaiHi. Y po6oTi 3anponoHOBaHO BHKOPUCTAHHS
HOBOI KOHueNuii 3 MeTOI NOKpalleHHs mpouecy
HABYAHHS Ta NPOBeJEHHS HAYKOBUX J0C/IiKeHb. Takox
Y po0OTi pO3riasHYTi AacmeKTH BIUIMBY CKJIAZ0BHX
rouuenuii Internet of Everything na raayss ocsiru.

Knrouosi cnosa — Internet of Everything, Internet of
Thing, ocséima, inmepuem peuei.

1. Bcryn

Konmemnis Internet of Everything(IoE) Bunukia B
HAacIiIOK  NPUPOJHOTO  pPO3BUTKY  Internet  of
Thing(IoT), IoE oxommoe OuIbII HIMPOKE ITOHATTS
3B'A3HOCTI 3 TOYKM 30pY BHKOPUCTAHHA CYYacCHHX
TexHOJNOTiH 3B'3Ky. loE ckiamaeTbcss 3 HOTHPBOX
KIIFOUYOBHX €JIEMEHTIB!

- JIIOAM - PO3IJISNAIOTHCS SIK KIHIIEBI “By3iu”,
s'eqHani  depe3 I[HTepHeTr mnma oOMiHY
indopmarriero (HampUKIAm COIaIbHI Mepexi,
JATYUKH 3/I0POB'SI Ta iHIIE);

- pedi - (i3WYHI AATYMKH, MPUCTPOi, BUKOHABYI
NpUCTPOI Ta IHIII EJeMEHTH, L0 TeHEPYIOTh
naHi abo OTPUMYIOTH iH(OpPMAIlIO 3 IHIIAX
JoKepell (HampHKial pO3yMHI TEPMOCTaTH Ta
TaJKETH);

- JaHl - aHaJNITM4YHI JaHi oOpoOJAOThCS Ta
MIEPETBOPIOIOTHCS B KOPHUCHY 1H(POpPMAILIItO, 10
JI03BOJISIE TIPUHHATH THTENEKTYallbHI pilIeHHS
Ta BUKOHYBAaTH MEXaHi3MH KOHTPOJIIO;

- TpoIleC - BUKOPUCTAHHS 3B'SI3KY MiX TaHUMHU,
peyamu Ta JFOJbMH JJIS JOJAaBaHHS BapTOCTI,
TPUKIIATH BKJTFOYAI0Th BHUKOPUCTaHHSI
NPUCTPOIB IHTEJEKTYaJbHUX Ta COLIAIBHUX
MEpEeX IS PEKIaMH BiAMOBITHUX MPOIO3UITIH
OXOPOHH 370pOB'sI MOTEHUIHHNM KiieHTaM [1].

n. IlocraHoBKa nmpoo6JieMu

Po3BuTOK TexHOJOTIH Oe3nepedHo BIIMBAE Ha yci
cthepu xutTsa. Chepa OCBITH HE BUKITIOUCHHS.

VY Bceomy cBiti IoE B ramysi ocBiTH 3HaXOIUTHCA
Ha paHHIX CTajifX PO3BUTKY, NPOTE NEsKi HaBYaJIbHI
3aKJaJM BXKE MPOKIANAIOTh ILIIX 10 BUKOPHUCTAHHS
i€l HOBOI KoHIEMIii. ToMy akTyaJlbHUM MUTAHHSAM €
JOCTipKeHHsT BripoBamkeHHs Internet of Everything y
rayTy3b BUIIOI OCBITH B YKpaiHi 3 METOIO MOAEpHi3aii
METOJIIB OpraHi3amii mporecy HaBYaHHS.

m. OCHOBHA YaCTHHA

OcHoBHuMH cKiamoBUMHU [oE, 110 BIUIMBaIOTH Ha
MpoLeC HABYAHHS BHU3HAYCHO HACTYIHI: JIIOAHW, JaHi,
peui Ta mporrec [2].

Jwau. Croromni ONBIIICTE JTIOAEH  MalOTh
aKKayHTH Yy  pI3HMX  COLIaJIbHUX  Mepeax.
[IpeacTaBHUKU CEKTOPY OCBITH MalOTh PO3YMITH, K
JIOOM  MAKIIOYAoThCS 10 IHTepHeTy, 100
BJIOCKOHAJIIUTH BIUIMB Ha IX HaBYaHHA. Bennke
3HAaYCHHS Ma€ TNONIYK HeoOXimHux (axiBmiB s
3aJydeHHsl y mpoilec HaBuaHHs. KoxkHa JofuHA CTae
"By310M" B Mepexi 1 M JOBEAETHCS MiAKIIOYATHCS, HE
TUTBKH 1O poOOTH MpoBimHWX (axiBmiB, a i g0
OJHOJIITKIB, sIKI MaroTh mofiOHI iHTepecu. Takum
YHUHOM, BOHU OyIyTh MIJTMTHUCS iICsIMH, OOTOBOPIOBATH
HOBI JIOCHIJDKEHHSI YM OCTaHHI mojii y cBoiii obmacti
HaBYaHHS.

[NosiBa BEMMKMX BiJKPUTHX OHJIAWHOBUX KYpPCIB - 11e
e OAWH KPOK 10 TIo0anbHOoi ocBiTH. Jeski mpoBimHi
CBITOBI YHIBEPCHUTETH pOOIATH CBOIX MpodecopiB
BIIKPUTHUMU JUISA JIFONICH 31 BCHOTO CBIiTYy, a iHTEpHET-
(dhopymu - 1ie mie OAMH 3aci0 1T pO3BUTKY 1 IOETHAHHS
Jro/IeH 3 yCiX cdep KUTTSL.

Uepe3 cucteMy OCBITH € MOXIIHBICTh 3HANTH
EKCIEPTIB Ta 3aJIyYdTH iX [0 HABYAHHS B PEKHMI
peasibHOrO dacy abo dyepe3 3ammcaHe Bigeo. I[oE
JIOTIOMO’KE 3B'SI3aTH YUHIB, SIKi 3HAXOIATHCS BiIIaICHO,
ajyie 3/aTHI HABYATHCS Ta OpaTH y4acTh y HABYAHHI.
Kpim Toro, IoE Hajgacth MeEHIIMHAM Ta Yy4HSIM-
IHBaJiJaM JIOCTYI 10 BHCOKOSKICHOTO HaBUaHHs Ta
piBHOMpaBHOT B3aeEMOIil.

IoE Takoxx Moke miATpEUMYBaTH TpOQeCciitHnit
PO3BHTOK JJIsl BUKJIa/Ia4iB, SIKI MOXYTb 3aTBEp/IXKYBaTH
HOBI MOJIelli HaBYaHHS, OCKIIBKH JIaHi Ipo iX poOoTy
30MparoThCSl 32 JIOIOMOTOI0  BIATYKIB  CTYJEHTIB,
JIOCSITHEHb BHKJIaJaviB Ta BimeosamuciB. Lli maHi
MOXYTh OyTH BUKOPHCTaHI /Jisi BUBYEHHS CHIIbHHUX Ta
CTa0KMX CTOpPiH BUKJIAQJadiB Ta € OCHOBOIO JIJIS
HaBYAJILHOTO  Mpollecy.  BucokokmacHi  MeTomu
BUKJIQJaHHI MOXyThb OyTH  mpodimizoBanHi 3a
JIOTIOMOT'010 3alMCaHUX Bijieo, sIKi OyIyTh AOCTYITHUMHU
JUISL IHIINX BHKJIAaJadiB SK 1HCTpyMEHT NpogeciiHoro
PO3BHUTKY, TOMY Oyae BHUKOPHCTaHUM JUIsl TIOSICHEHHS
Ta MOUIMPEHHs MOJieJiel HaBYaHHS.

Jani. OcTaHHIM YacoM aKTHBHO pO3BHBAIOTHCS
peui, moB'a3aHi 3 IHTEepHeTOM, BOHHM CTalOTh


mailto:VArsenchuk@gmail.com

PO3YMHIIINMU, HaJar0uu OinbIe KOPHUCHO1
inpopmarii. Hacmiaku 1mporo B HaBYaHHI € JOBOII
3HaYHMMHU. Hampukian, B pamMKaxX CBOIX JOCIHIIKCHb
CTYICHTH MOXYTh obupatu (ismuHi 00'exTH, 30UpaTn
JaHi Tpo I OO0'€eKTH, a TOTIM TepenaBaTH IO
iHpopMamito  iHIIKM TporpamMaMm JUIA  aHaJi3y,
ITiABHIIYFOYH TOYHICTH CBOIX JOCTIi/IKECHb.

JocmimkeHHs TOKa3aii, Mo TOCTYII 10 iH(opMariii
B peaJbHOMY Yaci Ta B3a€MOJis 3 eKCIepTaMH IifiCHO
BIUIMBa€ Ha HaB4YaHHsI. OIHUM 3 TaKUX NPHUKIAIIB €
KniBnenaceka kiinika y mrari Oraiio, CromydeHi
ratn Awmepuxku (CLIA), ne Oiomorito MOAUHU
BUBYAIOTh  y CEPEAHIX INKOJax 3a JOHNOMOTOI0
JIanapoCKOMiYHOT xipyprii Ha OCHOBI
BineokoHdpepeniit [3]. Oxun Xipypr po3moBigae mpo
0CcoOIMMBOCTI Ta (PYHKIIT cepIis Ta MpoIeaypy, a iHmui
MIPOBOIUTH oOmepaliifo. Y TOH ke Yac y4HI MOXYTh
3aJaBaTH IIUTaHHA. Pe3ynbraToM €  IOCHIJICHHS

MoTHBalii, OiTplie  y4YHIB  NparHyTe  CTaTH
MeJCeCTpaMH, JKapAMH abo MEIHYHIMH
mpaniBuukamMu.  OkpiM  3a0e3neueHHs  TOYHHX

JOCIIKEHb 1 pOOOTH 3 MaHIMyJSILISIMU 3 peallbHUMHU
JAHUMH, BOHU MOXYTh TaK0X 3pOOUTH CBili BHECOK Y
0a3u JaHUX, CTAIOYM YWICHAMH €KCICPTHHUX CHIJIBHOT y
PI3HUX JOCTIIHUIBKUX MPOCKTaX. BOHM HE TUIBKU
KOHTaKTYIOTh i3 JOCHIJIHUKaMH, aje i MpamiolTh 3
HUMH, JOIOMAararoud BHUpINIyBaTH MicIeBi Ta
riobaneHi IpobieMu.

VY pamkax HaBYAIbHOI MiSJIBHOCTI, IMOB'S3aHOI 3
¢bizuuHOI0 KYJIbTYpOIO, CTYICHTH MOXYTb
BUKOPHCTOBYBAaTH JaTYMKH [UI KOHTPOJIO 3a iX
MMOBCAKACHHOIO aKTUBHICTIO, 30Mpalo¥M HaHi Ipo
KUTBKICTh KpOKIB MiJ Yac XOJu Ta Oiry, 4acTrory
cepueOuTTs Ta iHI GYHKIIT MeTaboItizMy.

Peui. Peui - ne ¢i3uuni enemMeHTH, SKi MOXHa
MiIKTI0YaTH K 10 [HTepHeTy, Tak i 70 Jroned depes
maTyukd. JlaTdukw JaroTh pedam ''ronoc": MUIIXOM
3aXOIUICHHS JaHUX JATYUKH J03BOJISIIOTH peuaM CTaTH
KOHTEKCTOM, HAaJaroud OuTbIIe eKCIePUMEHTAIBHOT
iHpopMamii, ska JOmoMarae IOASM Ta MaIlnHAM
mpuiiMaTH BIATIOBIAHI Ta IiHHI pimeHHs. Hampukian,
CBOTOJTHI B MOCTaX BHKOPHCTOBYIOTHCS ~PO3YMHI
JATYNKH 11 MOHITOPHUHTY TEMIIEPATypH, CTPYKTYPHOT
LUTICHOCTI Ta IIUIBHOCTI PyXy B PEXHMIi peaibHOTO
yacy. TakdM YHHOM, CTYICHTH MOJXYTh BHBYATH
(hi3UKy, BUKOPHCTOBYIOYM CBOi IOPTATHBHI NPHUCTPOT
JUIs 300py Ta CHOCTEPEKEHHS 32 MOCTOM IIPH 3MiHi
3aBaHTa)KECHHI.

VY ocgiti ceHcopH 3 maTpUMKOIO IP MOXyTh OyTH
NpUETHaHI O apTedakTiB JUIsl KOHTPOIIO IOKa3HHKIB
TEMIIEpaTypH, CTaHy abo Miclsl po3TanryBaHHsS 00'ekTa
B PEXHMI peajbHOro yacy, 3a0e3nedyroun MOCTiHHUMI
noTik iHpopmManii g apxeosoriB abo crynentis. Lle
TaKOX rapHui crocio IS JIOCIII JDKEHHS
Ba)KKOJIOCTYITHHX TBapHH, TOIIO.

JlaTauK# TakoX BiZlirpatoTh MPOBiAHY poiib y chepi
Oe3IeKn CTYJICHTIB. N Okneni, [ITaT
Kamigopwis(CLLIA), kamepu 6e3mekn Ta JaTYUKH PYXY
IHTETpOBaHI B MeEpeXy INKII JUII MOHITOPHHTY
00'eKTiB.

Hpouec. IIpomec Bimirpae BaXJINBY pOib Y TOMY,
SIK JIFOJIH, JaHI Ta pedi B3a€MOJIIOTh MiX CO00I0, 1100

3abe3neunTr wiHHicTh y cBiti [oE. Ilpu mpaBuibHiH
oprasizauii Nmpouecy 3B'S3KH CTAlOTh aKTYaJbHUMH, a
notpibHa iHpopMais HaIXOIUTh JIOIUHI B OTPIOHMI
yac y BIiAMOBimHUI cmoci6. 3abe3rmedeHHs IOCTYITy
JIoen o MOXKJIMBOCTEH HaBYaHHS, SIK1
3aI0BOJIGHAIOTH 1XHI MOTpeOHn, 3poOUTH OCBITY OiibIn
e(peKTHBHOIO, ONTHMI3y€ dYac Ha  OBOJIONIHHS
iHpopMamiel0o Ta MOTHBYBaTHME CTyAeHTIB. Taki
MOJJIMBOCTI TakKOX CIPHATAMYTH  3aIliKaBICHHIO
CTYJICHTIB JI0 TpOLECY Ii3HAHHA Ta 3acTOCYBaHHSI
HOBHUX 3HaHb, IO € XXUTTEBO BAXIIMBHUM JUI MAHOYTHIX
yCIIiXiB y HABYaHHI Ta CyCHUIBHINA caMopeasizarii.

Benuke 3HaueHHs Mae 3BOPOTHHH 3B'S30K ILOJO
YCIIIIHOCTI CTyJAeHTa. Hampukiaza, CTyAeHT Moe
criocTepiraTd 3a CBOIM PEHTHMHIOM B  PEXHUMI
pEANLHOI0 4Yacy BiHOCHO THX, XTO HABYAEThCA Ha
TOMY X KypCi.

IoE 3miHUTE cmoci® TpoOBENCHHS EIEKTPOHHOTO
omiHoBaHHA. Maiik Jlmoifn, reHepalbHUIA AUPEKTOP
kommanii Edutech Associates, mpoBiB ociiKeHHS
eNeKTpOHHO1 ominku y cuctemax K-12 [4] y Bchomy
CBITI Ta OKpECIMB MOJENIb MHOMANbINIUX MOMid. BiH
OIUCYE CLIEHApiii, B IKOMY YY€Hb IiITBEPIIKYE SKICTh
CBOTO HAaBYAaHHS 4Yepe3 CEpil0 CICKTPOHHUX OIliHOK.
{06 oTpuMaTH MOBHY aKpEIUTALI0 Yepe3 Oyab-saKuit
odiuiiiHuil KaHaN, y4HI MOXYTh OTPHUMATH NOCTYI JIO

aKpeIUTOBAHOI eK3aMeHalliiHOT 30HHU, e
CKJIaJaTUMYTh ICTIUTH.
IV. BUCHOBKHI

Hocmimkeno xonueniiiro Internet of Everything ta
MO3UTHBHUHN nocBin 3 11 BmpoBamkeHHs B CIIIA.
[IpencraBneHO OCHOBHI CKIIAZIOBI, MIO BIUIMBAlOTH Ha
npolleCc HaBYaHHS B MeXax JaHOi KOHLEMNLil, cepes
SKHMX JIIOJIH, pedi, JaHi Ta mporec. ToMy JOUUIbHUM €
BIIPOBQ/KCHHA [aHOI KOHIEMIHi 10 ramy3i BHIIOT
ocBiTH B YKpaiHi.

CrucoK sukopucmaHux 0xcepen

[1] Caiitr «loT TechExpo» [Enektponnuii pecypc]. —
Pexxum JIOCTYILY:
https://www.iottechexpo.com/2016/01/m2m/ioe-vs-iot-
vs-m2m-whats-the-difference-and-does-it-matter/

[2] Caiit «CISCO» [Enextponnuii pecypc]. — Pexum
JIOCTYILY:
https://www.cisco.com/c/dam/assets/sol/ent/day-in-the-
life/education/index.html

[3] Caiir «Huffingtonpost» [Enextponnuii pecypc]. —
Pexxum moctymy: https://www.huffingtonpost.com/dr-
michelle-selinger/ cisco-knowing-everything-
when_b_4074269.html

[4] Caiir «Ruabase» [Enexkrponnuii pecypc]. — Pexum
nocrymy: https://rb.ru/story/10-edtech-companies/


https://www.iottechexpo.com/2016/01/
https://www.cisco.com/c/dam/
https://www.huffingtonpost.com/dr-michelle-selinger/
https://www.huffingtonpost.com/dr-michelle-selinger/




Designing Action Language for Foundational UML
Metamodel

Teslenko A.V.
Scientific advisor: PhD assoc. Prof. Chebanyuk O.V.
Software Engineering Department
Institute of Computer and Informational Technologies
National Aviation University
Kyiv, Ukraine
anastasiavtes@gmail.com

Abstract — this paper illustrates the process of designing
metamodel of Action Language for Foundational UML
metamodel using Ecore.

Keywords: Action Language for Foundational UML (ALF),
Ecore, Eclipse Modeling Framework (EMF), Model-Driven
Architecture (MDA), metamodel, abstraction, transformation,
expression, statement, syntax and semantics of modeling
language

I MAIN TERMS

Metamodel — a metamodel is a model of a model.
Metamodeling — a modeling process which takes place one
level of abstraction and logic higher than the standard
modeling process.

ALF — The Action Language for Foundational UML
(ALF) is a textual surface representation for UML modeling
elements. The Alf specification provides a model for the
abstract syntax of the language.

Ecore — the Ecore metamodel is a powerful tool for
designing Model-Driven Architecture, the core metamodel
at the heart of EMF. Is also defined in terms of itself. It
allows expressing other models by leveraging its constructs.

EMF — The core Eclipse Modeling Framework (EMF)
includes a metamodel (Ecore) for describing models and
runtime support for the models including change
notification, persistence support with default XMI
serialization, and a very efficient reflective API for
manipulating EMF objects generically.

1. PROBLEM FORMULATION

In software engineering, the use of models is more and
more recommended. A model always conforms to a unique
metamodel.

Metamodeling is successfully used in building flexible
modeling tools, interfaces between tools, and repository
definitions.

The introduction of an intermediate metamodel can be
beneficial for several reasons, namely, increased abstraction,
cleaner separation between the front and back ends, and
introduction of possibilities for re-targeting as well as cross-
generation of code [1].

Moreover, intermediate representations may also help in
supporting advanced code optimizations through ad-hoc
manipulations of such artefacts achieved through opposite
model transformations, which are independent of the code
generating transformations.

I1. DESIGNING OF ACTION LANGUAGE FOR
FOUNDATIONAL UML METAMODEL

According to the abstract syntax specification given in
the AIf standard [3], corresponding Ecore models were
created.

In its current state, the complete AIf meta-model
comprises more than 100 meta classes and thus, only some
relevant cutouts can be presented here due to space
restrictions.

The main abstract metaclasses related to the translation
of ALF concepts are described by Statements, Expressions
and Units [2].

g statements

B mnline B-switch B break

if
H return 8
B while B for|| H do| | H Expression H accept

H Block B classify
g empty

B Local_name_declare

Figure 1. ALF Statements

Statements are segments of behavior that are executed
for their effect and do not have values. They are the primary
units of sequencing and control in the Alf representation of
behavior.


mailto:anastasiavtes@gmail.com

This metamodel shows the statements, which are
currently realized in the implementation of the Alf standard
as subtypes of the abstract class Statement.

‘ EQ Expressions

[ [
[ B Prima Q Unary H H [IncrementAndDecrement |
I

[ I J

[ B sinary | [ B Conditional| [ B Assignment |
[ ] L ] L J

Figure 2. ALF Expressions

This AIf meta-model comprises various specializations
of the meta-class Expression.

An expression is a behavioral unit that evaluates to a
(possibly empty) collection of values. Expressions may also
have side effects, such as changing the value of an attribute

of an object.

| T
Qlassifiers
E MNamespgces gﬂ [ Packages
]

| B Receptions| | =l Operations|
J

[ J
[ Features

Figure 3.ALF Units

Expressions constitute the most fine-grained way of
modeling in Alf and may be used in different contexts. For
example, they are used for assignments, calculation,
modeling of constraints or the access to operations and
attributes.

Alf adds the concept of a unit to the basic UML concepts
of namespaces and packages. A unit is a namespace defined
using Alf notation that is not itself textually contained in
any other Alf namespace definition.

Units are lexically independent (though semantically
related) segments of AIf text that provide a level of
granularity similar to typical programming language text

files.
—

[1..*] parameter

H ActivityDefinition

]
[0..1] Body

B operation B Block
[ [ |
[ J [ J

[1..7] statement

H statement

Figure 4. ALF Operations

In Alf, Operations are used for behavioral modeling.
Operations may be parameterized and may contain an
“Operation Method”. Parameters of an operation are typed
and they possess a name. Additionally, the direction of the
parameter is indicated by the enumeration Parameter-
DirectionKind. Possible values are in, out or inout. The type
of an operation is determined by its return type. The method
of an Operation contains the complete behavior realized by
the operation.

One possible way of realizing this method is using a
Block, which represents the body of the operation. The
block itself comprises an arbitrary number of Statements.

The intermediate metamodel provides the means for
hosting a wide range of concepts that are then interpreted in
a certain way by the model-to-text transformation specific
for the selected target programming language [1]. That is to
say that, while the syntax is fixed, the semantics that the
various metaconcepts assume might change from one target
programming language to another and is therefore
embedded in the model-to-text transformation.

V. CONCLUSIONS

In this paper the metamodel of Action Language for
Foundational UML is built with Ecore in Eclipse Modeling
Framework. In this paper abstract intermediate metamodels
were defined resembling common  object-oriented
programming languages to which ALF concepts are
translated to.

This metamodels will help to understand the structure of
ALF by increasing abstraction, consequently easing
adaptability of transformation process.

In this paper, metamodels of Statements, Expressions,
Units and Operations realized in the current implementation
of the Alf standard were presented in order to highlight the
properties of syntax and semantics of ALF language, and
represent ALF behavioral modeling mechanism.

REFERENCES

[1] “Towards Translational Execution of Action Language for
Foundational UML” — Ciccozzi F., Ciccetti A., Sjodin M., 2013

[2] “Unifying Modeling and Programming with ALF” - Thomas
Buchmann, Alexander Rimer, 2016

[3] “Action Language for Foundational UML (Alf) v1.1” — Object
Management Group, 2017



An Approach to Application Optimization before
Compilation under Android Operation System

Volodymyr Yevtukh

Scientific adviser: PhD., Assoc. prof. Chebanyuk O.V.
Software Engineering
Institute of Computer and Informational Technologies
National Aviation University
Kyiv, Ukraine

Abstract - describes main concerns, methods, approaches and
techniques of optimization in Unity at Android devices. The
following topics will be affected: Android devices development
nowadays, optimization role in software, the need of
optimization, Graphics Processing Unit and Central Processing
Unit part in optimization and main techniques to use.

Keywords: optimization, Unity, Android

1.  Introduction

The progress does not stand still and all branches of
computer technologies are continuously evolving. Each day
methods, techniques and approaches that simplify the process
of development and maintenance are standing the test of time.
Among with them various software appears at the market.
Some of it is fated to remain unknown while other will rise
and become quality standard. For latter, defining factors of its
popularity are usually performance, usability, reliability and
optimization. First 3 factors are certainly important but as the
subject implies we will describe a particular part of the
optimization which is Unity optimization at Android devices
and the role it plays in development process.

1. Problem formulation

Optimization is the process of modifying a software
system to make some aspect of it work more efficiently or use
fewer resources [1]. It's an important development part of any
software as it enables to expand range of devices which are
capable of using the software.

A. Situation nowadays

Optimization concerns arise in majority of Unity projects.
Talking about Android development, the end result may vary
from device to device. There are much slower and much faster
phones out there, and the computational capability of mobile
devices is increasing at an extraordinary rate. It is not
surprising when a new generation of a mobile GPU (Graphical
Processing Unit) is five times faster than its predecessor. That
is incredibly fast when compared to the PC industry.

B. Mobile development

While developing a project one should remember that
mobile GPUs have lots of constraints in how much heat they
produce, how much power they use, and how large or noisy
they can be. GPU plays great role in pixel processing and
usually other powerful unit, CPU (Central Processing Unit), is
unused, though many mobiles have multicore CPU. So it is
often sensible to pull some work off the GPU and put it onto
the CPU instead (Unity does all of these) [2].

In addition, one should remember about profiling. It can
be extremely helpful in discerning which optimizations will
pay off with big performance increases and which ones are a
waste of your time. That means that if the CPU is slowing
things down, optimizing your Shaders will not increase the
frame rate at all, and if the GPU is slowing things down,
optimizing physics and scripts will not help as well [2].

m. Main part

Talking about game optimization at Android, we can
emphasize multiple techniques that can be used to make the
game run smoother or reduce resources needed. We will start
from the most obvious and simple ones and then will go to
complex.

A. Scripting

1. It's a good practice to use FixedUpdate() instead
of Update() to calculate physics if you have so.
The reason is FixedUpdate() is called particular
amount of times per second which creates the
effect of smooth position change. You can
specify the time calls using Time.fixedDeltaTime
variable.

2. Do not apply physics changes to colliders with no
Rigidbody (Static colliders). It will cause huge
leak of performance even on PC.

3. Use rigidbody.rotation instead of
transform.rotation if you want to rotate your
object. As it turned out it is 10-11 times faster.
The same goes for rigidbody.position.

4. Try to cache links as often as possible, i.e. if you
are referencing your object multiple times you
can rather store a link to it in a variable and then
use this variable in further scripts.

5. Avoid resource-consuming mathematical
functions like Math.pow() (it seems that majority


https://en.wikipedia.org/wiki/Algorithmic_efficiency

6.

of mathematical functions are so demanding to
resources, even simple raising to power). Instead
try to calculate manually.

Use classes for long-term objects and structures
for short-term ones.

B. Unity Environment

1.

Use Profiler to track which parts of your code
need to be optimized. Unity Android and iOS
have built in profiler. It displays messages each
30 seconds and understanding that log helps you
to determine leaks in both CPU and GPU work.
To open Profiler go to Window -> Profiler.

While building a project, use texture
compression. One thing that one should
remember is that different devices support

different texture formats. If device doesn’t
support your compression format it will
decompress all the textures into standard RGBA
32 and add it to already compressed textures. As
a result you will lose time and resources to
decompress textures but the result remain the
same. One format supported by all devices that
work under Android is ETC format, so you
would probably like to use it in most cases.

C. Unity Scenes

1.

Use simple colliders instead of mesh collider to
reduce amount of vertexes required to render
collider of your object.

Try to avoid using complex shaders. At mobile
games, shaders require a lot of GPU processing
so the more complex shaders you have the more
time they require to be processed. Use simple
shaders or write your own instead.

Use texture atlases and image sprites. These are
collection of images/textures stored in one file.
They are faster to load, have fewer state switches,
and are batching friendly.

Bake lighting instead of using dynamic lighting.
Dynamic lightning gives extra load to GPU,
which may cause loss of framerate.

Specify GameObjects’ LOD (Level of Detail) —
this will make objects simpler or eliminate them
completely as they move further away. At
hierarchy window create empty object and add a
LOD Group component. Now you can drag all
the objects you want to fade with distance
increase into this group. Each LOD group at
components scale refers to visibility and mesh
quality of an object. You can specify mesh for
each of these LOD groups to make object look
smoother when the camera is near and more
rough when the camera is far.

Occlusion/frustum culling.

Occlusion Culling is a technique that enables Unity engine
not to render objects, which are not currently seen by camera
or which are overdrawn by other objects. During this process,
a virtual camera will go through the scene, building a
hierarchy of potentially visible objects. This information is
used at the runtime by engine to define which objects should
be drawn and which one should not. [3].

To set up Occlusion in your project firstly go to Window -
> QOcclusion Culling. Occlusion window will appear. For now,
you can click on one or some objects at your scene and set
them to be both Occluder and Occludee Static. This will
enable them to be part of Occlusion Culling. You can also set
them to be static using Inspector window.

After specifying all objects (Don’t forget to Bake your
Occlusion) simply start the game and go to Occlusion ->
Visualization window. By rotating your camera in Game view
you will see how objects appear and hide at your Scene view.

When should you use Occludee Static and when Occluder?
Completely transparent or translucent objects that do not
occlude, as well as small objects that are unlikely to occlude
other things, should be marked as Occludees, but not
Occluders. This means they will be considered in occlusion by
other objects, but will not be considered as occluders
themselves, which will help reduce computation [3].

Other type is frustum culling which works similar to
Occlusion culling but it renders all objects in the field of view
of the camera.

iv. Conclusions

Optimization can become a key feature of a game or
simulation and an obstacle if you will overdo it. Before start
optimizing your project, firstly think twice and ask yourself
does it worthwhile. Bad optimization can cause more harm
than benefit, especially if you are new at it. Nevertheless, if
you decided to do it, start from general techniques and
refactoring, monitor your project through profiler and define
which parts of your project are resource demanding. In the
skillful hands optimization become a powerful tool in
development process of any game.

References
[1]  Wikipedia. Program
https://en.wikipedia.org/wiki/Program_optimization

[2]  Unity Documentation. Optimizations.
https://docs.unity3d.com/Manual/MobileOptimisation.html

[3] Unity Documentation. Occlusion
https://docs.unity3d.com/Manual/OcclusionCulling.html

optimization.

Culling.



https://en.wikipedia.org/wiki/Program_optimization
https://docs.unity3d.com/Manual/MobileOptimisation.html
https://docs.unity3d.com/Manual/OcclusionCulling.html

A Technigue For Software Models Comparison

Povaliaiev D.V.

Scientific Advisor: associate professor Chebanyuk O.V.
Software Engineering Department
National Aviation University
Kyiv, Ukraine
dmytro.povaliaiev@gmail.com

Abstract—as software modeling gains adoption, a set of
techniques to integrate it into existing software engineering
practices and established lifecycles is needed. One of these
techniques is a software model comparison that allows developers
to easily review changes made to the software product with the
help of software modeling.

Keywords—UML, XMI, LINQ

1. Introduction

In a modern agile software development environment, time
to market is both the most important and the most challenging
factor for software product to achieve. This prerequisite led to
recognition of importance of adaptability, which allows to
decrease the time needed for product adjustments.
Introduction of software modeling brings the possibility to cut
the development time even further, as changes can be
analyzed and verified without spending time on their
implementation. Review and verification is especially
important as it allows development team to identify the
problems early and prevent their propagation to the code base
[1]1[2][3]. In this context, comparison of software models
facilitates reviews of changes to be made to the software.

There are several existing software tools for software
models comparison, including the following ones:

e EMF Compare — provides generic comparison
facilities for any kind of EMF model and allows
to export differences as a model patch; the most
popular one.

o SiDiff — employs similarity-based matching
algorithms that allow it to be adaptable to any
kind of graph-like model. Also includes a DSL to
enable implementation of specialized high-level
changes [1].

However, these tools require high amount of human-made
operations to be conducted in order to obtain a comparison
result. Such approach makes them not so suitable for
automated model comparison, such as one conducted by
model version control system between several change
requests. Therefore, a technique suitable for automated
comparison would be valuable for model versioning and
change reviews.

n. Task Specification

To facilitate the process of software model change reviews
and overall software model versioning, a technique for
automated model comparison should be developed. The goal
of this technique would be identification of the set of
properties between the two models that are different. A
difference is defined as an atomic add, delete, update or move
operation executed on one of the model entities. Such atomic
operations are collected throughout the analysis process and
represented as a model themselves (a difference model) [1].
Such technique should follow the open architecture principles
to make the further development of technique variations for
different types of software diagrams included in models and
facilitate its extension by third-party researchers and
developers. In order to accomplish this task, it is necessary to
do the following:

¢ investigate the format of software model storing;
e propose techniques for software models comparison;

e represent an algorithm for software tool working.

m. Description of developed

technique

Specifically, each modeling environment tool stores and
manages the models with its own internal format or its own
“dialect,” even if a standard format is adopted. To improve
interoperability between modeling tools, standardization
bodies have defined specific model interchange languages.

The best-known model interchange language is XMI
(XML Metadata Interchange), a standard adopted by OMG for
serializing and exchanging UML and MOF models.
Unfortunately, even if this has been devised as an interchange
format, different tools still adopt it with different flavors

[41[5][6]-

Therefore, to provide a framework for operations on XMI-
compliant diagrams, the information should be processed by
the Model-to-Text transformation [4][7][8][9]. In the
following fragment of a class diagram representation in XMl,
an example of a class diagram containing a class with an


mailto:dmytro.povaliaiev@gmail.com

attribute of “unlimited natural” data type and generalization
connection are given;



Fragment of XMl file
<packagedElement xmi:type="uml:Class"
xmi:id="_quOMB8ASgEeelmrsnVV7-jw"

name="Class2">
<generalization
xmi:id="_anNPQAZY EeelgspGntkIFA"
general="_hlUHgP8eEeaaVV7q8po-h9Q"/>
<ownedAttribute
xmi:id="_JadtMAZYEeelgspGntkIFA"
name="attribute1" visibility="private">
<type xmi:type="uml:PrimitiveType"
href="pathmap://UML_LIBRARIES/UMLPri
mitiveTypes.library.uml#UnlimitedNatural />
</ownedAttribute>

</packagedElement>

Fig. 1 Fragment of XMl file

To perform the software models comparison, they should
be first transformed from the XMI-compliant text
representation to the corresponding data structures via reverse
Text-to-Model transformation [7][8].

After performing this processing, obtained data structures
should be compared in a top-down item-by-item fashion: for
each diagram in a model, its top-level entities (e.g. classes and
interfaces for class diagrams) should be compared. If a top-
level entity is absent in one of the models, its child entities
(e.g. attributes and connections of a class on a class diagram)
are marked as different ones without further investigation.
After evaluating top-level entities, for each entity considered
similar at this point an additional level of analysis is
conducted.

There are several types of analysis that can be conducted
to identify the same and different entities:

e static identity — entities are compared by explicit
IDs;

e signature identity — model element features such
as name, contained elements and so on are a
comparison criteria;

e probabilistic function (similarity matching) [1].

To further increase the comparison effectiveness, users
should be able to redefine the concept of matching for specific
DSLs, so that their specific semantic can be taken into
consideration.

Taking into consideration previous in the field of
extraction of information from XMI-compliant software
models, the .NET with built-in Language-Integrated Queries
(LINQ) is proposed for implementation of this algorithm

[718].

iv. Conclusions

A technique for software model comparison is proposed in
this paper. This technique facilitates the change review
process for software models that became an important artifact
in agile software development process. Such improvements
are expected to reduce the overall time of software product

development and its time-to-market and therefor reduce the
cost of development and increase project income from early
launch.

[1]

[2]

(31

(4]
[5]
(6]

[71

(8l

(9]

References

Marco Brambilla, Jordi Cabot, and Manuel Wimmer, Model-Driven
Software Engineering in Practice, Second Edition. Synthesis Lectures on
Software Engineering, Morgan & Claypool Publishers March 2017, Vol.
3, No. 1, Pages 1-207

Sanchez, L.E., Diaz-Pace, J.A., Zunino, A. et al. An approach based on
feature models and quality criteria for adapting component-based
systems Journal Software Engineering Research and Development
(2015) 3: 10. doi:10.1186/s40411-015-0022-1

Sielis, G.A., Tzanavari, A. & Papadopoulos, G.A. ArchReco: a software
tool to assist software design based on context aware recommendations
of design patterns Journal Software
Engineering Research and Development (2015) 2. doi:10.1186/s40411-
017-0036-

XML Metadata
http://www.omg.org/spec/XM1/

Architecture-Driven Modernization™ (ADMT™): Abstract Syntax Tree
Metamodel™ (ASTM™) http://www.omg.org/spec/ASTM/1.0

Philip  Newcomb. Chief Executive Officer Abstract Syntax Tree
Metamodel  Standard ASTM  Tutorial 1.0 access mode:
http://www.omg.org/news/meetings/workshops/ADM_2005_Proceeding
s_FINAL/T-3_Newcomb.pdf

Chebanyuk E. V., Povaliaiev D. V., Software architecture verification
approach, Software Engineering, National Aviation University, Ne2 -
2017

Elena Chebanyuk and Kyryl Shestakov An Approach for Design of
Architectural  Solutions Based on Software Model-To-Model
Transformation International Journal “Information Theories and
Applications”, ISSN 1310-0513 Vol. 24, Number 1, 2017, pages 60-84

Chebanyuk E. V., Povaliaiev D. V., An approach for architectural
solutions estimation, “International journal Informational theories and
knowledge”, Vol 11, number 2—2017.

Interchange access mode



http://www.omg.org/spec/XMI/
http://www.omg.org/spec/ASTM/1.0
http://www.omg.org/news/meetings/workshops/ADM_2005_Proceedings_FINAL/T-3_Newcomb.pdf
http://www.omg.org/news/meetings/workshops/ADM_2005_Proceedings_FINAL/T-3_Newcomb.pdf

AHaJI3 Cy4acHOTO CTaHy JOCIIIKEHb B Tay3l

IITYYHOTO 1HTEJIEKTY B YKpaiHi
[eBuyk O.0.

HaykoBuii kepiBHUK: Konpan T. 1.

Kadenpa imxenepii nporpamMHoro 3abe3rmedeHHs
HaBuanbHO-HayKOBHIA iHCTUTYT KOMIT IOTEPHUX 1HPOPMAIifHIX TEXHOJIOTIN
HanioHansHOro aBialiffHOTO YHIBEpCUTETY
KuiB, Yxpaina
alexeyolegovichsh@gmail.com

Anomayia — pod0Ta NPUCBAYEHA AHAJIZY CTAHY AOCJTIIKEHb
B rajysi mry4Horo intejekty B Ykpaini. HaBeneno ingopmaniro
NPO JIOCSATHEHHSI, PO3POOKH Ta BUHAXOAM BIiTYH3HSAHUX BYEHHUX,
TAa OCHOBHI HANPSIMKH PO3BUTKY IITYYHOI'0 iHTeIEKTY B YKpaiHi.

Knrwuoei cnoea — wimyunuii inmenekm, po3ni3HAGAHHA
obpazie ma Mmoeu, 00CHIONCEHHA, PO3GUMOK, MEXHONO02I]
PO3NI3HAGAHHA, ROWYO0BUIL cepaic

1. Bcryn

Tyunwii intenext (LUI) — onun 3 HalfHOBIMIMX HAIIPAMIB
inpopmanittanx texnonorid (IT). Ilepemictopis cTBopeHHS
JIIOJUHOINONIOHUX ~ MEXaHi3MiB MOYHHAETHCS e B
CTapOJIaBHHOMY CBITi i IIPOXOINUTH CKJIATHUAHN IUIIX EBOJIOIIII:
BiJl MpIi#l 1 JIereH 1, MePIIuX aHAPOIIIB, MEXaHIYHHUX MAXOBHX
TPaBIiB Ta IHIOIMX CKIAJHUX MEXaHI3MIB 3 JIFOJCHKOIO
MOBEIIHKOI0 /10 Cy4YacHMX IHTEJEeKTyaJbHO-MEXaHIqYHUX
pobori. Ilepmi mocmimkenns, mo BigHOCATECs mo LI y
Cy4aCHOMY PO3yMiHHI Oysiu 3po0JieH] Maike Biapasy K Micis
MTOSIBY TIEPIIIMX OOYMCIIOBANEHUX MarmuH [1].

n. llocraHoBKa Npoo6JieMu

Bce wacrime Haaxo/sTh HOBUHH PO JOCATHEHHS Yy cdepi
BHKOPHUCTAHHS IITYYHOTO IHTEIEKTY B CAMHX PI3HUX Tally3siX
KUTTEMISIIBHOCTI JTIOAMHU. Takci 31 MITyYHUM IHTEJICKTOM B
Snonii [2], mTyyrnit iHTeNeKT Ha GoHmOBHX Oipxax B CIIIA,
B MEIUIMHI KuTalichbkoi kommnanii Watsons [3] — i 1ie maneko
HE BECh CIMCOK PO3p000OK. TOoMy, aKkTyaJbHHM MUTAHHAM €
aHaJli3 HayKOBHX JIOCSTHEHP B Taly3i MITYYHOTO iHTEIEKTY B
VYxpaiHi.

im. OCHoOBHAa 4YaCTHHAa

Bemnkoro ycmixy B cdepi posmisHaBaHHA 00pasiB
nocsrHyna kommanis Viewdle. ®axiBii koMmmaHii 3aiimManuch
PO3pOOKOI0 TEXHOJIOTIH po3Mi3HaBaHHSA 0Ci0 i 00'€KTiB, SKi
LIIMPOKO  BHUKOPHCTOBYIOTBCSI Yy  IOIIYKOBHUX  CepBicax.
PesynpraraMu  HammMx ~— CHIBBITYM3HUKIB  3alliKaBUJIACs
kopropatis Google. CmiBpobitHuku Viewdle mepeixamm a0
CILIA, ne ysiitnuin B komany Motorola Mobility i Motorola
ATAP group [4].

Takox crapran Looksery mocsrHyB ycmixy B miid cdepi.
Looksery - me mporpama mis MOOGITBHHX TPUCTPOIB, SKa
JI03BOJISIE B peajbHOMY Yaci 3MiHIOBaTH BJIacHE OONMYYS Tak,

00 KpacuBO BHUIVISIATH HA (JOTO 1 HABITH MiJ Yac Bigeoyary.
Oxpemuii nomatok Looksery 3HmK 3 AppStore, cTaBIIu
YacTHHO nporpamu Snapchat [5].

Y 2009 pomi yxpainmi Omnexciii IlleBuenko, Makcum
JlutBun Ta Mutpo Jlinep 3acHyBamu kommnairo Grammarly,
mo 3aliManacs pO3pOOKH OJHONMEHHOTO CepBicy Uit
HepeBipky aHrilicbkoro npasonucy. Cranom Ha 2017 pik
Grammar 3aiiMaB TmepIie Micle SK <«HAHKpalm[uid OHIAifH-
cepBic 3 mepeBipku mpasomucy» Big TopTenReviews, 3
pefituarom 9.68. Cranom Ha 2017 pik komanga Grammarly
ctaHoBuTh moHaM 100 oci0, a KiTbKICTh IIOJCHHUX aKTHBHUX
KOPHCTYBadiB Jocsrae Maixe 7 MutbiioHiB. CepBic MmigBHIIye
SKICTh MIMCBMOBOTO CITLIKYBaHHS, IPOTIOHYIOYH BUITPABJICHHS,
SIKI pOOJSATh TEKCT TpaMaTHYHO, CTIIIICTHYHO i CTPYKTYpPHO
NpaBUIBHUM [6].

Iv. BHCHOBKH

B po06orti mpoanaxi3oBaHO CTaH Ta OCHOBHI HalpamrOBaHHS
YKpalHCbKUX BYEHHX B Tally3l IITy4YHOTO IHTEJNEKTY.
Bu3HaueHO OCHOBHI HANPSIMKH Ta NEPCIIEKTHBU JOCHIIIKEHD 3
nopanpuioro BrpoBakeHHs LI B HaykoBHMX WX Ta IS
peatizaiiii IPUKIAIHUX 3a/1a4Y.

Cnucok sukopucmanux oxcepes

[1] Toaraeupkuii O. O. EBomonist po3po0OK y ranysi ITYy4HOro iHTENEKTY
B Ykpaini ta cBiti/ O. O. Iloxraeupkwmii. / Jlocmimkenns 3 ictopii
texuikd. — 2012. — Nel6. — C. 48-54. — [Enextponnuii pecypc] —
Pexum noctymy:  http://ela.kpi.ua/bitstream/123456789/7703/1/RHT-
issue-16-title-05-Podgayetsky.pdf

[2] Hukuruu A. Sony co3mama koMmmauuio 1t BHeapeHuss MW Ha poIHOK
takcu [Enextponnnii pecypc] / Aprem Huknrun // AHO "WuHomomuc

Menua". — 2018. — Pexxum JOCTYITY:
https://hightech.fm/2018/02/21/sony-ai-taxi.
[3] Delo.ua [Enekrponnmii pecypc]: [IarepHer-nopran]. — EnektporHi

nani. — Pexxum moctymy: https://delo.ua/lifestyle/kakuju-kareru-mozhet-
sdelat-iskusstvennyj-intellekt-333683/. — Ha3pa 3 exkpana.

[4] Viewdle [Enexrtponnumii pecypc] // Bikimemis: BiibHa EHIMKI —
Enextpon. JIaHi. - Pexxum JIOCTYITy :
https://uk.wikipedia.org/wiki/Viewdle. — Ha3a 3 ekpana. — Jlara
ocranHbol mpasku: 18.10.2015.

[5] Delo.ua [Enextponnuii pecypc]: [lurepuer-mopran]. — Emexrpommi
naHi. — Pexum gocrymy: https://delo.ua/business/snapchat-kupil-
odesskij-startap-za-150-millionov-303880/. — Ha3ga 3 ekpana.

[6] Grammarly [Enextpounuii pecypc] // Bikimexis: BiibHA €HIWKI. —
EnextpoH. JaHi. - Pexum JIOCTYIY


mailto:alexeyolegovichsh@gmail.com

https://uk.wikipedia.org/wiki/Grammarly. — HasBa 3 expana. — Jlata ocTtaHHbO1 mpasku : 07.11.2017.



JIoCImPKEHHSI OCHOBHMX ITIX0/11B MOKPAILICHHS
PO3POOKHU apXITEKTYPH IIPOrPaMHOr0 NPOIYKTY

Korenko Jlennc BanenTunoBuu

HaykoBuii kepiBHuk: Konpan Tersna Iropisna
Kadenpa imxenepii nmporpamHoro 3ade3rnedeHHs,
HaBuanpHO-HayKOBHIA iHCTHTYT KOMIT IOTEPHUX 1HPOPMAIifHIX TEXHOJIOTIH,
HarmionansHuii aBianiitauii iHCTUTYT
KuiB, Ykpaina
d.kotenko@elgnc.com

Anomauia — podoTa NpHUCBSYEHA JOCTIIKEHHIO Tpolecy
NMPOEKTYBAHHSI Ta PO3POOKH  apXiTeKTypH MPOrpaMHOro
MPOAYKTY, 3 METOI0 INOKPAIEHHS SIKOCTI po3po0ku Ha erami
NMPOEKTYBAHHS Ta KOHCTPYIOBAHHS. 3alpPONOHOBAHO METOAMKH

Ta maxoau s miaBUIIEHHs edeKTUBHOCTI opraHizauii
NMPOEKTYBAHHA, PO3POOKH  apXiTeKTypu Ta  MITPUMKH
MPOrPaMHOI0 MPOAYKTY.

Knrouoei cnosa — npozpamue 3abe3neuenHs, apximekmypa

npoOZpaAmMHO20 3abe3ne4eHHs, Ri0OX00u po3podKu apximexmypu,
PO3POOKa npozZpamHozo 3ade3neueHns, epexkmugHicmoy cucmemu,
ZHYYKICIb cucmemu, Mauwimadoeanicmov cucmemu, niOmpumka
nPOZPAMHO20 RPOOYKMY, pedhakmopunz.

1. Bcryn

IT ingycTpist OYpXJIMBO PO3BUBAETHCS, IO NPH3BOIUTH 10
MOCTIMHOTO 3pPOCTaHHS KIUIBKOCTI MPOrpaMHUX MHPOJYKTIB
(ITIIT). IopiyHO CTBOPIOETBCA Ta 30UIBIIYETBCA 0OCAT
HOBITHIX CHCTEM JJisi MOTPped Oi3HeCy Ta JAepiKaBHUX YCTAHOB.

Kpim crtBopenns HoBux IIIl BaxkmuBor ckimamoBor IT
PHHKY € TIiATPUMaHHA BXX€ pO3POOJICHHX TPOAYKTIB,
pO3IUpeHHsT iXHBOI (YHKIIOHATBHOCTI Ta ajamTamii o
CydacHMX BHMMOr. Bce 1e mNpu3BOIUTH HE TUIBKH 10
30UTPIIICHHS PO3MIPIB TaKWX CHCTEM, a ¥ 10 YCKJIaIHECHHS
iXHBOI CTPYKTYpH Ta TPYIHOIIIB B IMOJANBINIH MiATPUMIL.
Hepinko noBOOWTBCS MiATPUMYBATH pPO3pOOJIEHY CHCTEMY
NpOTAroM 0araThbOX POKiB, A00 HABITH JAECSITHIITh.

[MinTpuMKa CKIQJHUX CHCTEM € HEMpOCTOI0 33/1a4er0 i
notpedye 3HA4YHO OUIBIIMX TPYAOBHX Ta MaTepiaJbHUX
pecypciB HIX 3a3BMYail IMIaHyeThCs. Po3poONeHHS HOBUX
(GYHKIIH Ta JOOIpaIfoBaHHS CTBOPEHOI (YHKIIOHAJIBHOCTI
MIOCTIfHO CYHPOBOKYIOTH PO3POOHMKIB Ha €Tarli MiATPUMKH.
BignoBigHo, I{iHA HABITH HE3HAYHUX 3MIH MOKE BHUSIBUTHUCH
CyTTEBOIO, a BHECEHI 3MIHM BIUIMHYTH Ha pOOOTYy Bciel
cucremu. Tomy minst KoMmmaHiii 3 po3poOKHM HPOrpamMHOTO
3a0e3neueHHs MUTaHHA MPO 3MEHIICHHS KiJIBKOCTI pecypciB
HEOOXiTHUX IJIs1 PO3pOOKM INMPOAYKTY Ta MiJBUIICHHS HOTO
e(peKTHBHOCTI € BKpail akKkTyaJIbHHM, OCOOJIMBO B YMOBax
00MEKEeHOTO OIOIKETY.

n. IlocTaHoOBKa Mpo6JieMH

[MocraBneHi BUMOTH Tepex pPO3pPOOIIFOBAHOIO CHCTEMOIO
HEPIZKO 3MIHIOIOThCS. BHECEHHS 3MiH MOXKJIMBE SIK Ha eTari
MPOEKTYBaHHA Ta pO3pOoOKHW, TaK 1 TICIsI BBOOYy B
eKCIuTyataifiro.  Po3poOyieHi  MOAymi  CHUCTEMH  TiCis
3aBEpIICHHS PO3POOKH MOXYTh BHSBHUTHCH HEAKTyaJIbHUMH
N0 BiJHOIIEHHIO a0 Oi3Hec mnoTpe6. B Takmx Bumagkax
CHCTEMY BIANPABIAIOTH HAa JIOOTPAIIOBAHHS I BHECEHHS
3MIH y BXe B po3poOsieHuil mnpoaykr. JloompairoBaHHs
CHCTEMH Ha TAKOMY €Talli CTa€ OUIBII CKIaIHUM Ta 3aTPATHUM
TPOLIECOM.

Benmmkoro mpobieMoro s KOMITaHIH pO3pOOHUKIB €
cyrTeBa Brpata sikocti [1I1 3a yMOBM CyTTEBHX 3MiH BHMOT
3aMOBHHKA, [I0 HE MOXYTh OyTH 3aJOBOJICHI B paMKax
apXiTeKTypHHUX pimeHb. Excrnept 3 nporpamHux pimeHp [
By4 nopiBHIOE BHECEHHsS CYTTEBHX 3MiH y BKe MOOYIOBaHY
apxiTekTypa 3 J00yIyBaHHSM JBOX IIOBEpXiB Yy BXKe
30yJ0BAaHOMY XMapo40ci i, IPUUOMY HE 3BepXY, a 300Ky [1].

Jnist moniepepKeHH s He3arIaHOBaHUX BUTPAT Ha BHECEHHS
3MiH B po3poOieHmil Ta BBemeHW B ekcioryaTamiro [1I1
JOUUTEHAM € e(DeKTUBHA OpraHi3alis MpoIecy MPOeKTyBaHHS
apXiTEKTypu Ha eTami IUIaHYBaHHS, Ta JOTPUMAaHHS BCI€IO
KOMaHJIOI0 PO3pOOKH NEBHHUX MPAaBHIL, 10 MiJBHUIIUTh KIHIEBY
SIKICTh TIPOJYKTY.

B Ttakmx Bumagkax MpaBHIBHO BHOpaHi apXiTEKTYpHI
PIlLIEHHS HA TIOYATKY NMPOEKTYBAaHHS CUCTEMH B MailOyTHbOMY
3MOKYTbh 3MEHIIHNTH 4ac Ta 00CAT POOIT 10 BHECEHHIO HOBUX
3MiH, pO3IIUPEHHS (YHKIIOHATBFHOCTI Ta BHIIPABJICHHI
MOMWIOK. TakuM 4YMHOM L€ AacTb MOXIIMBICTH 3MEHIINTH
00CST KamiTaJOBKIIQAEHb B IPOEKT.

m. OCHoOBHA YaCTHUHA

OCHOBHUM 3aBIaHHSIM apXiTEeKTypH € 3pOOHMTH MpOILEC
pO3pOOKKM Ta  CYNPOBO/DKEHHS  OIBII  MPOCTHM  Ta
epextuBHuM. CucreMy B SKiH TpoJaymMaHa apXiTeKTypa
MPOCTIIIe TeCTYBATH, BHOCUTH 3MiHHU Ta BiJJIarO/IKyBaTH.

OOpaHi apxXiTeKTypHI pillIeHHs € KIIOYOBUMH (haKTOpamy,
10 BIUTMBAIOTH Ha 3arajbHY AKicTh mponyky. Ilix skictro I1I1
PO3YMI€THCS BIIOBIAHICTE BUMOTaM Ta MOTpedaM 3aMOBHHKA.


mailto:d.kotenko@elgnc.com

Ha npuknagi ycmimiHMX NpPOEKTIB MOMKHA BHIUIUTH
IeKiTbKa  OCHOBHHX,  VHIBEpCANbHHX  IOXOMIB,  SKi
XapaKTepu3yIoTh 100pe MPoIyMaHy apXiTeKTypy:

A. Egexmusgnicmov cucmemu

BaxnuBoro 0coONMBICTIO € BUKOHAHHS MOCTABICHUX
3aBlaHb CHCTEMOIO, IIPH YOMY B pi3HHX yMmMoBax. Jlo mporo
IIYHKTY BiJIHOCUTBHCS HaIiHICTh, IPOJYKTHUBHICTH, Oe31eKa Ta
MamTaboBaHICT.

B. [nyuxicmo cucmemu

IIpu po3pobmui Oyap-sAKoi cucTeMu OyBarOTh €Tald, KOJH
BUMOI'M 3MIHIOIOTBCS YU JOJAIOTHCSA HOBi. BIAMOBigHO 4MM
IIBH/IIIE MOKHA BHECTH 3MIiHH B iCHYIOUHH (DyHKIIOHAT 1 UM
MEHIIIC MIOMIJIOK TMPH I[bOMY BUHHKHE — TUM OUIBII FHYYKOIO
Oyne cucrema. ToMy mpu po3poOii BaKIMBO OI[IHIOBAaTH Ha
CKiNbKU 0arato B MOJAJIBIIOMY MOXKe OyTH 3MiH Ta SIKOTO
poxy. BaxmuBo cebe 3amuraru: «lllo, Ko oOpaHUi ImiaXis
BUSBUTHCSI HEBIPHUM 1 sIK 0arato mpUAAeTh MEePEmUcyBaTh?».
Tako)X BaXKJIMBOIO KOHIEIIIED € Te, mo0 3MiHa OXHI€ET
YaCTUHM CHUCTEMHU HE MPH3BOJIWIA IO 3MiH IHIIMX Ta HE
BIUIMBAJIA HA iX Mpale3aTHICTb.

PoGepr Maprin Ha mnpoTa3i OaraTboX pOKIB aHaNi3y
epextuBHOCTI po3podOku [II1 miAIIOB BHCHOBKY, IO BapTO
NPUTPUMYBATUCh THYYKHX METOMAOJIOTIH pO3pOOKH Ipu
KOHCTPYIOBaHHI, 1[0 JO3BOJIUTh B KOPOTKI TEPMiHHU TOCTAYATH
I1IT 3 3asBreHO0 (QyHKIiOHANBHICTIO [2]. Po3pobka 3rigHo 3
TakKUM  TIAXOZOM TIIOBMHHA  BigOyBaTHCh  KOPOTKHMH
iTepaIlisiMH, Ta MPOIeC PO3POOKU Oy/Ie THYYKO aJanTyBaTUCh
iz HoBi BuMorH [3].

C. Moocausicmo poswupens

Ha nouaTtkoBoMy eTarli B CHCTEMY BapToO 3aKJIaJaTH TiJIbKA
OHCOBHHMU  (DYHKI[IOHAT, TMPHUIYCKAIOYM II0 JOJaTKOBa
iH(ppacTpyKTypa B3araii He 3HaqoOuThCA. JJomasaTu ii mo mipi
HEOOXITHOCTI, ab0 SKIIO € J0Ka3W Ha KOPUCTh TOro, IO
BKITIOYATH HOBY IH(QPACTPYKTYpy OOIHIEThCSA Jerme Ta
JleleBine, HDK Bigknacth Ha MaiioytHe [2]. Tlpu npomy
apxiTeKTypa IMOBHHHA JIETKO HApOIIyBaTH HOBUI (yHKIIOHAI
o Mipi HEOOXiTHOCTI.

BrnacTHBOCTI THYYKOCTI Ta PO3IIMPIOBAHOCTI apXiTEKTYpH
Ha CTUIBKH BaXXJIMBi, O BHUHECEHI B OKPEMHUH NPUHINI —
«[IpuHIIMT  BiAKPUTOCTI/3aKPUTOCTI»: TPOTPaMHi CYTHOCTI
NMOBUHHI OyTH BIAKPHUTI I PO3IIMPIOBaHHS Ta 3aKPUTHUMHU
TSt MO GiKartii.

D. Mawma6ysanns npoyecy pospobxu

ApXITeKTypa TOBHHHA PO3MOAUIATH TIPOLEC PO3POOKH
TaKUM YHMHOM, 100 32 paXyHOK HOBHX JIFOJICH MOXXJIMBO OyJi0
CKOPOTUTH TEPMiHU MOCTAYaHHS MIPOIYKTY.

E. Tecmosanicmo

Kox moxpuruii Tectamu Oyle MaTH MEHIIE ITOMIUIOK Ta
Oyne HaxgiliHime mpamoBatd. byma  cTBopeHa  Imina
METOIOJIOTis po3po0KK depe3 TecTyBaHHs — Test driven
development (TDD) [4].

F. Moowcnusicms nosmoprnozo euxopucmanus

BapTto cucremy po3poOisiTh TakuM 9HHOM, 00 ii MOkHa
OyJI0 BUKOPHCTATH B IHIINX MPOEKTaX 3 CX0XKOI0 NMPEIMETHOIO
obuacTio.

G. Hiompumrxa ma 00bpe cmpykmypo8arui, 3p03yMitull
npoepamHuil Koo

Yacto TpamiseTbcs TaK, IO I Yac PO3POOKH OAHI
MPaI[iBHUKN 3aMIHIOIOTBCSl IHIIMMH, @ BECTH MiATPUMKY
CHCTEMH JOBOIOUTHCS HOBHM IIpaliBHUKaM, IO HE Opamu
yuacri B ii mouatkoBiit po3po6ui. ToMy apxiTekTypa MoBHHHA
HaJaTH MOXJIMBICTh IIBHIKO Ta JIETKO BHUKATH B IPOCKT
HOBUM  po3poOHuKaMm. [Ipoekr He mMOBMHEH  MaTH
IyOIIOBAaHOTO KOAY, HATOMICTh OyTH 10Ope CTPYKTYpOBAHUM
i MaTu 1o0Ope onucaHy TOKyMeHTauilo. BapTo 3ayBaxxutH, mo
BeJIMKa KUTBKICTh JOKYMEHTAIlil Ha CTUTBKH X TOTaHa fK 1
noBHa ii BigcyTHicTh. KpiMm Toro goxymenraiis moBUHHa OyTH
3aBXK/U aKTYaJIbHOIO 1 MOCTIHO OHOBIIOBATHUCH [2].

I[lo wMmipi Toro sk pJomalOTbCs HOBI  GYHKIIT 1
BHIIPABIIIOTHCA MMOMMJIKH, CTPYKTypa KOXYy IOTipIIYETHCS.
SIKIIo He 3BepTaTH HA i€ yBary, TO Taka Jerpajaalis npu3Be/e
IO TUTyTaHWHHU, Ky HEMOXIWUBO MiATPUMYBaTH. Takuii Kox
1€ YaCTO Ha3HUBAIOTh CIAreTi KO/ (3aIuTyTaHuil KOJ).

B mimAx miABHINEHHSA AKOCTI MPOTPAMHOTO  KOXY
pedakTOpUHT Ma€e MPOBOAUTHCH MOCTIHHO, KOXHY TOJIUHY, a
TO ¥ HaBiTh KOXHI TMIBrOAWHH. BuUKOpHUCTOBYOUH
pedakTOpUHT NPOrpaMHU KOJ| CTaHE eJIeTaHTHHM, BUPa3HUM
Ta MPOCTUM B PO3YMiHHI.

KpiM TOoro BapTo JOTPUMYBATHCh €JWHOIO CTaHAAPTY
KOJyBaHHs BCI€I0O KOMaHIOK. Bech KOJ TIOBHHEH BUTIISIATH
TaK, HiOM HOTO mucasa OfHa — MyXe KBasTi(hikoBaHa JTIOIUHA.

BaximBo Takoxk mam’sATaTh, MO IPOCTOTA — IIe
MaWCTEepHICTh JOCATaTH OiIbLIOro, poOJsuM MeHme. A
poboua cucTeMa — OCHOBHHH IMOKAa3HHK YCIIIIHOCTI MPOEKTY

2.

Iv. BHCHOBKH

B crarti 00rpyHTOBaHO Ba)KIIMBICTh €Taly MPOEKTYBAaHHS
apxiTeKTypu TMpH pPO3poOIll HPOrpaMHOro 3a0e3MeUYCHHS.
Tako) BHIUICHO OCHOBHI MiJXOMU IMOKPAIICHHS PO3POOKH

apxitektypu IIIl, Taki sK: eQEeKTUBHICTh, THYYKICTb,
PO3IINPIOBAHICTD, MAaITaboBaHICTh, TECTOBAHICTB,
MOJKJIHBICTh MTOBTOPHOTO BHUKOPUCTAHHS Ta

CYIPOBOJUKYBAHICTh CHUCTEMH, JOTPUMAHHS SKHX JO3BOJATH
CYTTEBO HOKpPAIIUTH Iponec po3podku Ta miarpuMku I1I1.
OmucaHi MiAXOAW MOXYTb 3aCTOCOBYBAaTHCh JJISI BCIX MOB
MporpamMyBaHHS 1 TIOBHHHI JOTPHUMYBATHCSA HPOTATOM
PO3pOOKH BCHOTO TPOEKTy. JlOTpUMaHHS NaHUX NPUHIIHIIIB
CYTTEBO TOKPAILTUTh SKICTh POOOTH MPOAYKTY, 3MEHIIUTH 4ac
PO3pOOKH 1, BIIOBITHO, 3HU3HUTH KIiHIIEBY BapTICTh.

Cnucok euKkopucmarux 0xcepen

[1] Byu I'. O6BEKTHO-OPHEHTUPOBAHHOE MPOCKTHPOBAHHE C MPUMEPAMH
npumenenus — K.: luanextuka; M.: Konkopx, 1992. — 519 c.

[2] Maprun P., Maprun M. IIpuHUMIBL, MATTEPHBI ¥ METPHKH THOKOM
pa3pabotku Ha s3bike C#. — Ilep c. anrn. — CII6: CumBon-mroc, 2011.
—768c.



[31 Duapro C., Mxennudep I'. Tocturas Agile. LleHHOCTH, MPHHIKIIBL, [4]  James Bender, Jeff McWhether Professional Test Driven Development
Mmeroznosorun. — Ilep c. anrn. — CI16: Mann, BaHos u ®epbep, 2017. with C#. — Wiley Publishing, Inc. — 327p.
—573c.



Investigation of Unity3D timers performance

Krainy Mykyta
ICIT SE-318
Scientific adviser: PhD., Assoc. prof. Chebanyuk O.V.
Software Engineering Department
National Aviation University
Kyiv, Ukraine
nickkhryne@gmail.com

Abstract — investigation of effectiveness and performance of
different ways to organize timers in Unity3D is represented in
this paper. The grounding of choosing approach, using
Time.deltaTime to estimate time spent in different game
processes is given.
coroutine,

Keywords—Unity3D, timer,

Time.deltaTime.

InvokeRepeating,

1. Introduction
Why do we need time calculation in games?

Dealing with different applications and games, it is often
needed to perform time calculation. It can be used to resolve
gaming issues, such as start and finish of game, to calculate
how much time is wasted on some actions in the game or to
define the place of user in highscore table. In different
applications timers can be used for various purposes,
beginning from the starting stopwatch to the simple
calculation of passed time.

The most important problem in Unity3D is to perform
precise time calculation which will work with stability. The
different approaches to resolve this problem are highlighted in
this investigation.

n. Aim of research
The aim of research is to investigate ways of organizing
time interval counting in Unity3D. After that provide
comparative analysis and define what approach to calculate
time allows obtaining precise results.
m. pros and cons review of
different means to organize time

calculation in unity3d

A. Coroutines

Coroutines are a general control structure whereby flow
control is cooperatively passed between two different routines
without returning. When we call a function, it runs to

completion before returning. This effectively means that any
action taking place in a function must happen within a single
frame update; a function call can’t be used to contain a
procedural animation or a sequence of events over time. The
execution of a coroutine can be paused at any point using the
yield statement. The vyield return value specifies when the
coroutine is resumed. Coroutines are excellent when
modelling behaviour over several frames. Coroutines have
virtually no performance overhead. StartCoroutine function
always returns immediately, however you can yield the result.
This will wait until the coroutine has finished execution. There
is no guarantee that coroutines end in the same order that they
were started, even if they finish in the same frame. Example of
applying coroutine to calculate 5 seconds is given below

using UnityEngine;
using System.Collections;

public class ExampleClass : MoncBehaviour

{
TEnumerator WaitAndPrint()
{
ff suspend execution for 5 seconds
yield return new WaitForSeconds{5);
print("WaitAndPrint " + Time.time);
1
IEnumerator Start()
{
print("Starting " + Time.time);
/7 Start function WaltAndPrint as a coroutine
yield return StartCoroutine("WaitAndPrint™);
print("Done " + Time.time);
1
}

B. InvokeRepeating

Invokes the method in time seconds, then repeatedly
invokes it every repeatRate seconds. Cancellnvoke method
stops the repetition. The method in invoked only at regular
intervals. Using irregular intervals, multi-step is impossible in
this kind of time evaluation. Also, despite of its simplicity, it



can have huge influence on performance, compared to the
Coroutine method. Invoke* functions in Unity3D are
implemented by means of reflection, which has huge overhead
when calling, and it should be avoided. Example of applying
Invokerepeating is given below

using UnityEngine;
using System.Collections.Generic;

/f Starting in 2 seconds.
// a projectile will be launched every 8.3 seconds

public class ExampleScript @ MonoBehawiour
{
public Rieidbody projectile;
vold Start()
{
InvokeRepeating("LaunchProjectile®, 2.2f, B.3f);
}
void LaunchProjectile()
{
Rigidbody instance = Tnstantiatefprojectilel);
instance.velocity = Random.insideUnitSphere * 5;
}
}

C. Time.deltaTime

The time in seconds it took to complete the last frame It is
used to make game frame rate independent. If a value is added
or subtracted value every frame chances are we should
multiply with Time.deltaTime. When we multiply with
Time.deltaTime we essentially express: “I want to move this
object 10 meters per second instead of 10 meters per frame”.
Time.deltaTime  should not be relied on from
inside OnGUI since OnGUI can be called multiple times per
frame and deltaTime would hold the same value each call,
until next frame where it would be updated again.

iv. Grounding of choosing
approach for precise time
calculation in unity3d

When different techniques of timer implementation in
Unity3D are considered, the most stable and productive
mechanism should be preferred. As it was stated above,
InvokeRepeating has huge overhead, so in large projects it
influences the performance too much.

In case of coroutines, the logic doesn’t block the main
thread, the performance isn’t reduced too much. Unlike

threads read/write is in series rather than concurrent parallel
reads, which means that using coroutines is safer. However, it
can cause stack memory issues if a coroutine is Kkilled
externally or never fully executed.

If we can neglect some time deviations, the coroutine
approach is the most obvious to use. However, if precise
calculation is needed, time.deltaTime approach should be
considered. Using time.deltaTime in project, it is made frame
independent, so performance issues should not affect heavily
time calculation. In Unity3D, a simple time calculation in
Update() method can look as in example:

public Text timerText;
private float secondsCount;

void Update()

{
UpdateTimerUI();
}
public void UpdateTimerUI()
{
secondsCount += Time.deltaTime;
timerText.text = (int)secondsCount + "s";
}

It is an example of simple timer, measuring seconds. The main
advantages of time.deltaTime approach are precision,
simplicity and absence of additional load on performance. So,
in usual cases of time calculation, it is recommended to use
this approach.

Conclusion

The aim of investigation is to define the most exact way to
estimate time in Unity3D applications. It was defined that that
time.DeltaTome approach allows to obtain the most precise
results. But it can be applied only for calculation of very small
amount of time. To calculate more large intervals of time it is
recommended to use technique that is based on
“invokeRepating” implementation. Courotines usually give
errors when application works in background. Also In order to
check results of calculating time involving “InvokeRepeating”
technique you may use StopWatch class.

References

[1] “Unity in action” Joseph Hocking
[2] https://docs.unity3d.com/ScriptReference/MonoBehaviour.InvokeRepeat
ing.html

[3] https://docs.unity3d.com/Manual/Coroutines.html
[4] https://docs.unity3d.com/ScriptReference/Time-deltaTime.html


https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnGUI.html

Research and Development Workstation
Environment: the new class of CRIS

Kyrylo Malakhov

Scientific advisor: Vitalii Velychko
Microprocessor Technology Department,
V.M. Glushkov Institute of Cybernetics,

The National Academy of Science of Ukraine,
Kyiv, Ukraine
malakhovks@nas.gov.ua

Abstract — against the backdrop of the development of
modern technologies in the field of scientific research, the new
class of Current Research Information Systems and related
intelligent information technologies have arisen. It was called —
Research and Development Workstation Environment — the
comprehensive problem-oriented information systems for
scientific research and development lifecycle support. The given
paper describes general information model of the Research and
Development Workstation Environment class systems.

Keywords — CRIS, RDWE, Research and Development,
Composite Web Service, Cloud Computing.

1. Introduction

The development of modern technologies increasingly
covers the field of intellectual activity and, especially, in the
field of scientific research and development. The new class of
Current Research Information Systems (CRIS) and related
intelligent information technologies have arisen that support
the main stages of the scientific research and development
lifecycle, starting with the semantic analysis of the
information & data material of arbitrary domain area and
ending with the formation of constructive features of
innovative proposals. It was called — Research and
Development Workstation Environment (RDWE) - the
comprehensive problem-oriented information systems for
scientific research and development support. A distinctive
feature of such systems and technologies is the possibility of
their problematic orientation to various types of scientific
research and development by combining on a variety of
functional services and adding new ones within the Cloud-
integrated Environment (inside the Ubuntu open source
operating system as the integrating cloud environment for
instance). The given paper describes general information
model of the RDWE class systems.

1. Current Research Information
Systems

In the modern English-speaking scientific environment, a
steady term — Current Research Information System (CRIS)
[1] was introduced to designate scientific information systems
for access to scientific and academic information. It is

important to emphasise that the definition of CRIS also
specifies that CRIS is not only intended for direct access to
information sources of science but also, according to the
ERGO project, for:

= to facilitate access to national scientific and technical
information services;

= to identify the main existing information sources and to
evaluate access possibilities and the potential for the
utilization of these sources at European level,

= to invite national data hosts to offer their Research and
Development (R&D) information and to make this
information searchable for the user.

The EuroCRIS organisation was founded in 2002, is an
international not-for-profit association, that brings together
experts on research information in general and research
information systems. The mission of EuroCRIS is to promote
cooperation within and share knowledge among the research
information community and interoperability of research
information through CERIF - the Common European
Research Information Format. Areas of interest also cover
research databases, CRIS related data like scientific datasets,
(open access) institutional repositories, as well as data access
and exchange mechanisms, standards and guidelines and best
practice for CRIS. The EuroCRIS provides the framework for
the flow of information/data between a broad variety of
stakeholders:  researchers,  research  managers  and
administrators,  research  councils, research  funders,
entrepreneurs, and technology transfer organisations.

Requirements for CRIS in the information management
aspect of strategic research management has been analysed in
[2], which describes the types of research managerial
activities, introduces the currently available information
sources and how the information found in these is applied
today. The paper [3] describes requirements for CRIS to
effective dissemination of technologies, the management of
scientific programs and functioning of funds for research
funding. Noted the importance of CRIS systems to collaborate
researchers and to support the information functioning of
funds. Also represented the basic lifecycle of scientific
programs and the information demands of participants at each
phase of the cycle.

The CORDIS portal emphasised the basic use cases of
scientific portals for researchers: keep up-to-date on current


mailto:malakhovks@nas.gov.ua

research findings and strategic directions; identify funding
sources for R&D; find partners to cooperate in R&D activities
and share expertise; form transnational consortia for
exploitation of research results; promote and locate
transferable technologies, and more.

m. General information model o
the RDWE class systems

The RDWE class system’s generalized information model
represented as a three-tuple composite web service (CWS)
using the revised formalism given in [4]:

CWS = (AWS,F,Cl-,,.},
where:
is the RDWE composite web service;
AWS = {aw is a set of atomic web
services  (problem-oriented microservices and FLOSS

applications; personalized FLOSS applications) available for
usage. The set consists of the problem-oriented atomic
web services and each of them can be designed and
developed as a microservice or a desktop application, that
allows them to be used as an independent software separately
from the RDWE and as its components inside ;

F = AWS is a set of functions, the

functional filling-up of the RDWE, each function is the result
of coordination and interaction of the elements.

C; € AWS. C; = {awslk = 1.k is a subset
of atomic web services that are required to implement the -th
function of ;

Clepe = tprlmid, o5, erd, typ is a set of
elements (represented as layers) that combine into the Cloud-
integrated Environment (CIE);

— physical resource layer represents physical
hardware and facility resources;

— middle layer (using in the concepts of cloud
service orchestration model [5]) represents resource
abstraction and control layer. It is supposed to use OpenStack
software platform;

— operating system layer represents guest operating
system. It is supposed to use Ubuntu server with LXDE
(abbreviation for Lightweight X11 Desktop Environment)
desktop environment or Xfce desktop environment. Atomlc
web services work on the operating system layer — ;

— coordination component. The function is to
coordinate atomic web services in , and by the
coordination procedure we will understand the execution of
invocation of some in the defined sequence. The
coordination component can be implemented as the
reverse proxy server of tasks. Nginx also is a part of -
used as front-end to control and protect access to the server on
a private network, performs tasks such as load-balancing,
authentication, decryption, and caching.

— a typical FLOSS layer includes some
regular application suit needed for the scientific research and
development lifecycle (regular software suit may change in
the future): LibreOffice office suite; Mozilla Firefox and

Chromium web browsers; Sylpheed email client; Sublime
Text 2 and jEdit source code editors; Wine compatibility layer
that aims to allow computer programs developed for Microsoft
Windows to run on Unix-like operating systems; Python
(SciPy Python library used for scientific computing and
technical computing); R environment for statistical computing
and graphics; Eclipse integrated development environment;
Redmine project management and issue tracking tool; X2Go
remote desktop software.

CIE of RDWE delivers to researchers (to researcher’s
client device — laptop, desktop, mobile or tablet) using the
extended Platform-as-a-Service service delivery model via
X2Go remote desktop software and ssh cryptographic network
protocol (Fig. 1).

Typical FLOSS la

am of RDWE

Managed by support tc

Fig. 1. Cloud-integrated Environment of RDWE delivery model.

To take all features of CIE, the researcher’s client device
(laptop or desktop) must run latest stable release of X2Go
remote desktop software and comply with the following
system requirements.

iv. Conclusion

The development of modern technologies increasingly
covers the field of intellectual activity and, especially, in the
field of scientific research and development. The existing
CRIS oriented on the following main types of services: access
and reuse of scientific and academic information,
methodologies, and technologies; information search; targeted
dissemination of information; messaging services; bridging of
horizontal and vertical relations between scientists; backup
data storage and archival information. We propose the new
class of CRIS and related intelligent information technologies.
This class supports the main stages of the scientific research
and development lifecycle, starting with the semantic analysis
of the information of arbitrary domain area and ending with
the formation of constructive features of innovative proposals.
It was called — Research and Development Workstation
Environment — the comprehensive problem-oriented
information systems for scientific research and development
support. A distinctive feature of such systems is the possibility
of their problematic orientation to various types of scientific
activities by combining on a variety of functional services and
adding new ones within the Cloud-integrated Environment.

References

[1]  Nikos Houssos. Cris for research information management. 2011.

[2] Niclas Lindgren and A Rautamki. Managing strategic aspects of
research. Proceedings CRIS-2000, Helsinki, 2000.



[3] Peter Dew, Christine Leigh, and Bill Whyte. Adviser ii:theory and [4] V. Shkarupylo, R. Kudermetov, and T. Paromova. Conceptual model of
practice of finding and presenting rtd results. Proceedings CRIS-2000, automated composite web services synthesis process. 2012.

2000. [5] Sandeep Bhowmik. Cloud Computing. Cambridge University Press,
2017.



A technique for software models merging

Mironov Yuriy

Scientific adviser: PhD., Assoc. prof. Chebanyuk O.V.
Software Engineering Department
Institute of Computer Informational Technologies
National Aviation University
Kiev, Ukraine
Yuriymironov96@gmail.com

Abstract — in modern software engineering industry the
technologies change and evolve rapidly. Because of this,
nowadays software architects experience a strong need to express
software solution not as a piece of code, but as a software model
that can be described, extended and re-worked with no affiliation
to programming language. Therefore, there is strong need in
tools and comprehensive environment for working with software
models. The paper considers a problem of software models
merging and introduces an algorithm for UML diagram
processing.

Keywords — UML. LINQ, XMI, XML, Abstracr Syntax Tree

.  Introduction

Software engineering is a competitive and quickly
developing industry that is prone to changes. However, the
majority of these changes involve only the technology stack
used to build a solution. At the same time, the principles and
approaches to software design, as well as fundamental rules of
how digital solutions work, remain the same, despite the
programming language used for implementation change year
by year. In such dynamic environment, software models
represent the only point at which a product can be clearly
seen: it has just right amount of technical details to understand
all the peculiarities but at the same time it is not attached to
any platform or programming language. So, while
technologies deprecate, the software models live on and can
be implemented with minimum effort, because all the
architecture is ready and described in comprehensive form.

Another peculiarity of modern software engineering is a
wide spread of Agile development methodology, that implies
readiness to frequent change of requirements to a distinct
solution. This often brings turmoil to the project, prevents
from seeing the bigger picture and making right decisions in
terms of software architecture. Software models are useful in
this case, because they are more human-readable,
understandable and easy to edit immediately seeing how
changes affect the entire solution.

Therefore, modern driven development is heavily used in
modern software engineering and software models may be
considered to be the key artifacts of software development
process. Being so important for the project success, software
models should be supplemented with a comprehensive work
environment, like IBM Rational Software Architect (IBM

RSA). However, for more comfortable collaborative work
with software models, there is a strong need for a tool for
merging software diagrams. Software models merging is a
major concern and is hard to implement properly, considering
all the pitfalls. A given paper intends to give a short overview
of software models merging problem, derive a basic approach
and algorithm that can grant a merging software models.

n. Formulation of the problem

The main task is to design an approach to software models
merging. The “merge” process implies input of several
diagrams and a single diagram as an output. The input
diagrams should be of the same type and should have some
similar parts for successful merge. The main goal of such an
approach is to merge software models identifying duplicates
and elements with strong similarities. Duplicates must be
unified into a single element.

Since the software models are divided into several types by
their concept, distinct logic for comparison and merge should
be described for different diagram types (e.g. activity
diagrams, flow diagrams et cetera). However, the common
parts of merging technique for different software models
processing should be discovered and unified to design more
comprehensive solution.

. Main part

In order to read software models programmatically, one
should discover a file/markup format in which the model is
stored. There are many applications for work with Unified
Modeling Language (UML) diagrams and various respective
storage formats (StarUML and JSON, UMLet and custom
eXtensible Markup Language dialect et cetera). The most
notorious of these is IBM RSA application. It introduces a
comprehensive environment for work with multiple diagram
types with advanced features like metamodeling tools and
model execution. It uses XML Metadata Interchange (XMI) to
store UML diagrams. XMI is an open standard developed by
Object Management Group used for storing complex
consistent data. In the paper, XMI storage (v2.x) format is
considered for software models processing [2].

The XMI is expressive enough to be able to describe
various types of UML diagrams. In scope of the paper,



package diagram will be considered. In any case, XMl
describes diagram as a set of entities and their relations.
Entities are stored using fundamental <packagedElement> tag
[1]. PackagedElement may be class or interface in class
diagram, actor or use case in use case diagram, code package
in package diagram or component in component diagram.
Also, every packagedElement has xmi:id attribute that stores a
unique identifier of each entity. This should be kept in mind
because it may be used in case of collaborative editing of
existing entity of a diagram (such identifier may be used as
pivots for merging).

Moreover, packagedElement is used to store relations
between these elements, as well as entities, have own
identifiers and attributes that show their types, and also they
have two nested tags that point out to packagedElements by
storing their identifiers. This allows to depict entities and their
relations [3].

Example of package description in package diagram:

<packagedElement xmi:type="uml:Package”
xmi:id="Packageld” name="PackageName />

And here is an example of connections between packages:

<packagedElement xmi:type="uml:Use”
xmi:id="SomeUseld” memberEnd="UsedPackageEndld
UsingPackageEndld >

<ownedEnd xmi:id="UsedPackageEndld”
type="UsedPackageld” />

<ownedEnd xmi:id="UsingPackageEndld”
type="UsingPackageld” />

</packagedElement>

So, it is possible to parse XMI that stores model data and
recognize a set of entities represented on the diagram. Having
entities (and their identifiers respectively) in memory, it is
possible to recognize and remember relations between models.
This allows to handle the case when there is a need to merge
diagrams where new relations have been defined: entities with
similar identifiers exist on both diagrams and it is not a
problem. The identifiers themselves allow to match entities
from different diagrams and merge non-conflicting attributes
(like new-added package description).

Moreover, because of the generic approach of XMI to
storing entities and their relations, there is no need to design
different approaches to different UML diagram types, because
programmatically they are the same and can be recognized via
similar parsing techniques.

However, for now there is no way to introduce smart
merges like checking how to merge changes in a single field
of a single model. However, this is not possible even in mature
version control systems like Git. Still, it is a good idea to mark
it as a merge conflict, just as Git does.

As for implementation, .NET Framework and its LINQ
library can be used for fulfilling such task. LINQ is a powerful
tool for parsing XML and it suits well for parsing XMI [4].
Having XMI tags and attributes extracted in memory, it is not

hard to arrange data into domain-specific classes and traverse
them, conducting the merge algorithm.

Considering all the aforementioned, here is a description of
merge algorithm itself:

e Traverse input XMI files, recognize all the
packageElements that represent diagram entities
(classes, packages et cetera).

e Put the entites in two key-value storage for
further mapping, where key is XMI unique
identifier.

e Traverse both XMI files recognizing
packageElements representing relations, put them
into distinct key-value storages.

e Go through key-value storages with entities, find
matching identifiers, create new resulting entity
for each match in both storages that represents a
union of attributes of both input entities.

e (o through storages with relations, apply missing
relations from both of input model into output
model.

e Serialize the in-memory representation of entities
and their relations in the XMI format (output
file).

This is only a skeleton of algorithm that handles only the
most simple and naive cases. However, it is still a solid
fundament for more logic that can improve model merge flow.
Additional flags, parameters and options may help to
automatically resolve model merge conflict.

iv. Conclusions

Using XMI as a machine friendly representation of UML
diagrams, it appeared to be simple to recognize entities and
their relations. Moreover, XMI introduced software models in
generic format, which allows to derive a general approach to
software models merging. The algorithm introduced in the
paper is simple to implement, basic yet comprehensive and
covering the majority of models merge use cases.

References

[1] Object Management Group, XML Metadata Interchange Specification,
http://www.omg.org/spec/XM1/2.5.1/, 2015

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer, Model-Driven
Software Engineering in Practice, Second Edition. Synthesis Lectures on
Software Engineering, Morgan & Claypool Publishers March 2017, Vol.
3, No. 1, Pages 1-207

[3] E. Chebanyuk, Yu. Mironov. An approach of obtaining initial
information for software models analysis. “International journal.
Informational content and processing.”, Vol. 4, number 2 — 2017

[4] E. Chebanyuk, Yu. Mironov Extracting information about software
models. Imxenepist mporpamuoro 3a6esnedenss. Nel -2017



http://www.omg.org/spec/XMI/2.5.1/

Kpocmiardpopmenicts. Orasaa maardpopmu .NET Core

Mopo3 O./[1.

HayKkoBui kepiBHuk: Ckanosa B.A
Kadenpa imxenepii nporpamHoro 3abe3rnedeHHs,
[HCTUTYT KOMITTOTEPHUX iHPOPMAIHHUX TEXHOIOTIH
HarmionaneHuii aBianiitHuii yHiBEpCHUTET,

KuiB, Ykpaina
elenad.moroz@gmail.com

Anomauyia — po0doOTa NpPUCBAYEHA PO3MVIAAY HpPodIeMH
Kpociiatpopmuoi  po3podku 3acodbamu .NET. Ila crarrs
noBuHHa nposiciutu, o Take .NET Core cboroaui, siki wmiji
HoBOI peanizanii .NET Ta sik Bona noB'sizana 3 Microsoft .NET
Framework. Y poOoti jociaimkeHi OCHOBHI MOKJIMBOCTI,
xapakTepucTukn Ta mepeBaru .NET Core. Takoxk B po6ori
po3risiHyTi cueHapii miaargopmu Ta Habip iHCTpyMeHTIB 1Js
PO3po0KH BiANMOBIHNX 32CTOCYHKIB.

Knrouoei cioea — NET Core, CoreCLR,
Kpocnaamgopmenicme, npozpamue 3aoesneuenns, \Windows, Mac
OS, Linux, IDE, Microsoft Visual Studio, Visual Studio Code,
Visual Studio for Mac, JetBrains Rider.

1. Bcryn

Kpocmmarpopmenicte  —  37aTHICTE  MPOTPAMHOTO
3a0e3neueH sl MpaloBaTh OUTBII HIX Ha OJHIW miatdopmi
abo omeparriitHiit cucremi [1].

OcHoBHUM 3aBjgaHHsaM |T-xkommaniii € 3a0e3medyeHHs
iXHROTO YCHiIXy Ha PHHKY IPOTPaMHOTO 3a0e3MeueHHs.
Kpocruiarhopmia po3pobka MpPOrpaMHOro  3a0e3medeHHs
JIOTIOMOKE BHPIMIUTH 0araTo BaXXJIMBHX MOMEHTIB (IS
NOJAJBLIOT0  yCIiXy NpoAyKTy. Hanpukian, KiibKicTh
KIHIIEBUX KOPHCTYBadiB, MPOCTOTA Y BCTAHOBJICHHI Ta
OCBOEHHI IIPOTPaAMH.

OpHUM 3 OCTaHHIX NMPHKIAIIB KPOCIUIATGOPMHUX CHUCTEM
e woBuit pemiz3 .NET Core. 3'sBuBmuce B 2002 pori,
iatdopma NET mpoiina qoBruit nuisx i 3Moria 3aBoloBaTH
CWIIbHI TIO3UIII SIK HaJiiHE PIMIEHHS KOPIOPAaTUBHOTO PiBHS

[2].

27 gepsHs 2016 poky [4] pasom 3 Microsoft Visual Studio
2015 Update 3 6y Bumymenuii .NET Core Bepcii 1.0. B
oHoBneHHi g VS 2015 Oyna peanizoBaHa IiJTpHMKa
po3pobku i .NET Core.

NET Core € xpocrmardpopmenum (Windows, Mac, Linux)
anaioroM .NET Framework 3 BigKpUTHM BHXiTHHUM KOJOM.
Bin wmictuts cepeny CoreCLR - kpocmardopmeny
peamizarito CLR. Hosa mmardpopma po3BuBamace i
PO3BHBAETHCS TOCUTH CTPIMKO. Yike 16 muctonana 2016 poky
o6ys sumymenuii .NET Core Bepcii 1.1 [5], a 14 cepmas 2017
poky BinOyscs peniz .NET Core Bepcii 2.0 [6

Tpeba 3ayBaxkuth, mo ctBoputd .NET 3acTocyHOK MOXKHA
3a JOTMOMOTOI0 JIEKUTBKOX MOB mporpamyBaHHsi: C#, F#, un
Visual Basic.

. IlocraHoOBKa Npo6JieMu

Ha crorogmimHii neHh mOCTae mMpobieMa CTBOPEHHS
3pY4YHOTO, OaraTo()yHKIIIOHAJILHOT'O Ta, TOJIOBHE,
KpocIutaTGOpMHOTO  3aCTOCYHKY. Abke Bce  OLIbmIOq
HOMYJISIPHOCTI HAOMPAIOTh TIPOTPaMH, 1110 MOXYTb MPAIIOBATH
OimpIn, HIK Ha OJHIA amapaTHii 1wIatdopmi i(abo)
omepartiiHii cucremi [3].

KoxxHa KoMaHzma Mg 4Yac pPO3POOKH CTHKAETBCS 3
HEOOXiHICTIO MIATPUMKH BHCOKOTO pIiBHSA SIKOCTI CBOTO
npoAyKkTy. HesBaxaroum Ha 3Ha4Hy 4Yaco3aTPaTHICTS,
3a0e3neueHHs AKOCTI MPOAYKTY € HEBiJ'€MHOI0 CKJIaJOBOIO
foro ycmixy B MaiOytHROMY [3]. 3po3ymino, mo MoO)KHa
pO3pOOUTH 3aCTOCYHOK IMiJ OJHY IUIaThopMy, ajie HOro
BapTICTh Ta KUTBKICTh KiHIIEBUX KOPHCTYBadiB Oyae 3HAYHO
Hkga [1].

Hoeruii gac mratdpopma .NET nHagaBama mupoxuii psia
MOJKJIMBOCTEH 110 CTBOPEHHIO CEPBEPHUX, JECKTOHUX YU BeO-
3aCTOCYHKIB, 3aCTOCYHKIB XMapHHX oOuuncieHs (anri. cloud
computing) 3a aomomorow xmaphoi miardpopmu Microsoft
Azure Ta 3aCTOCYHKIB JiJIS MOOUIBHUX NPHUCTPOIB. AJe mpu
mpomy miatrgopma ..NET Bce 3k Takm He Oyma
KpOCIUIaT(OPMHOIO Ta MiATPUMYBaJla TiJbKH OIepaliiHi
cucteMn cimeiictBa Windows. TakuMm 4YMHOM BHHHKIA
notrpeba B po3poOIli HOBOI IIaTGOPMH, HOBOI TEXHOJOTIT
.NET, mo po3paxoBaHa Ha poOOTy 3 Pi3HHMHU OIepaIliiHIMA
CHCTEMaMH.

Mera 1aHOrO TOCIiIKEHHS — IEPEKOHATHCS B MOXKIIMBOCTI
po3podkK KpocmiarhOopMHUX 3acTOCyHKiB 3acobamu .NET,
JOCIINTH IHCTpyMEHTH pO3poOKH IIPOrpamMHOTO
3abe3nedeHnss Moot C# um 1it nmopiOuux, mepesarun .NET
Core.

m. OCHOBHA YacCTHHA

.NET — ne cranmaptr ECMA, sixuii Mae pi3HI peamizallii:
NET Framework, Unity, Mono i tenep .NET Core. To6To
YhMaja YacTHHAa (YHKIIOHANBHOCTI € cmimbHOI0 11t NET
Framework i NET Core [7]. Ane B HOBY peanizauito, .NET
Core, 3akjajeHi i AemIO iHIII TPUHIIAIIH.

Hacrymni xapaxTtepuctuku Haiikpame omucytoTh .NET
Core:


mailto:elenad.moroz@gmail.com

e Cywmicuicte: .NET Core cymicanit 3 .NET
Framework, Xamarin i Mono 3a monmomororo .NET
Standard

e [HCTpyMEHTH KOMaHIHOTO psAKa: BCi cCHeHapii
MPOJXYKTYy MOXYTh OyTH BHUKOHaHI B KOMaHJIHOMY
pAnKy

e Binkpurnii Buxiguuii xox: ruatrgopma .NET Core
BiIKpHTa, BOHa BUKOpUCTOBye umineH3ii MIT Ta
Apache 2. Jlokymenraris ninensyerbest mig CC-BY.
NET Core € npoexrom .NET Foundation

e [IlinTpumka Ta CymnpoBia miaTGopMu KOPIOPAIi€0
MaiikpocodT ta cimsHOTOI0 .NET y GitHub

e Kpocmiarpopmenicts: npamoe Ha Windows, MacOS
Ta B JAeAKMX JucTpuOyruBax Linux. [lomaBaHHS
OUIPIIOT  KUIBKOCTI MIATPUMYBAHUX OmepamiiHuX
cuctreM (OC), apXiTeKTypH IPOLIECOPIB Ta CICHAPIiB
3aCTOCYBaHHS - OCHOBHE 3aBJaHHs KOpIopauii
MaifkpocodT, sika CTaBUTH CO01 3a ILIb MOMIJIUBICTh
.NET Core mpamtoBaTi Ha MAKCHMaJIBHO MOXXJIHBOMY
Jliara3oHi MPUCTPOIB Ta OlNepaliiHUX CUCTEM

e .NET Core w™ae ¢QyHIaMeHTANEHO MOXIYIBHY
apxiTektypy. Runtime, pisui 6i6mioTeKkH, KOMITLIATOP
Ta iHIOI KOMITOHEHTH CIIPOCKTOBAaHI TaKUM YHWHOM,
o IiXHS B3aEMOJisl BiOyBaeThCcs 3a JOMOMOTOIO
iHTEep(QeiiciB, a BOHH CaMi BHCTYHAIOTh SK OKpeMi
CYTHOCTI.

e T'myuxe posropranHs 3actocyHkiB .NET Core

Opnieto 3 kiroyoBux nepepar .NET Core € mopTaTHBHICTS.
Kox, mammmcanmit Ha .NET Core moxHa HamamryBatd st
BUKOHAHHS Ha pI3HUX MOiATpuMyBaHuxX muargopmax. B
3aJIXKHOCTI BiJ| HANAIITYBaHb B BAallIUX MPOEKTaX KOJ, IO
BukopuctoBye .NET Core, moxe mparroBat Ha ruiathopmax
NET Framework, Mono Tta Xamarin, B Windows 8§ Ta
Windows Phone, a takox mHa Universal Windows Platform
(UWP). Bu MoxeTe XOCTHTH KiTbKa 3aCTOCYHKIB OJHOYACHO,
BukopuctoBytoun pisHi Bepcii CoreCLR, i okpemo ix
OHOBJIIOBATH, TOOTO, BM HE 3000B'I3aHI OHOBJIIOBATH IX
OJIHOYACHO.

Hapemri, miatdopma NET Core 6yne npoaykrusHoro. Onna 3
miner .NET Core - 3pobutH BHTpatm KOXXHOI aGcrpakiii
3pO3yMITMMH PO3pOOHHKAM 3a JIOMOMOTIOI0 peaizaiii MoJesi «uaTa
TIIBKH 3a Te, IO BUKOPHUCTOBYEThCs» (pay-for-play model), sika
pOOUTH OUEBMIAHUMH BUTPATH BiJl 3aCTOCYBaHHS abCTpaKiliii BUILIOTO
piBHS [T BUpilIeHHs skoroch 3aBmanus. Kpim 1soro, .NET Core
Oyzme mpaloBaTH MaKCHMAajJbHO IPOAYKTHBHO i3 CTaHIapTHOIO
6i6ioTexoro, sika MiHIMI3ye omeparii BUAIEHHS MaM'aTi 1 3araabHIH
00csar maM'aTi, 1o 3aiiMac Ballla CUCTEMA.

Hacporomui  icHytote wotupu  cuenapii .NET  Core:
kpocmiatdopmui  BeG-3actocynkun ASP.NET (ASP.NET Core),
kpocruiatrGopmHi 6i0IioTeKH Ta iHPPACTPYKTYPH, KPOCILIaTHOPMHI
KOHCOJITBHI 3aCTOCYHKH, a Takoxk UWP-3acToCyHKH.

Tenep € MOXJIMBHM PO3TOPTaHHsS BJIACHOTO Be6G-3aCTOCYHKY
ASP.NET wna Linux. Tobro ASP.NET Core - ue HoBHi
kpocruatropmumii Be6-crek s .NET Core.

BigMiHHICTE MDK ~ KpocmiardpopMHUMH  OiGmioTekamu — Ta
iH}pacTpyKTypaMu moysArae B CTyneHi MacmraOyBaHHS.

Hapeurri, UWP-3actocynku, siki JOBruii yac Oynu opieHTOBaHi
Ha CIMEHCTBO MPUCTPOIB 3 orepauiiiHoro cucremoro Windows 10,
Teriep MOXKyTh BukonyBatucs B .NET Core.

T'oBopsun npo KpocmaTopMeHicTh, He TOTPiOHO 3a0yBaTH MPO
IHCTpYMEHTH po3poOKu. 3apa3 MU MOXKEeMO OOpaTH OAMH 3 TaKUX
inctpymentis: Visual Studio, Visual Studio Code, Visual Studio for
Mac, JetBrains Rider.

Ha nmannit moment Visual Studio e mocuts moryxkuoro IDE. 1e
Halikpaiuii BUGIp cepexu po3poOku Ha Windows mamruHax, THM
nage € ii 6esxourroBHa Community Bepcist [8].

Visual Studio Code € qynoBuM KpocmaThOpMHAM PETaKTOPOM.
Jlo Toro x BiH HIATPUMy€ YMMally KUIbKICTh MOB Ta TEXHOJIOTIH
nporpaMmyBanHs. Penaktop npaimroe Ha Windows, Mac OS Ta Linux,
MiATPUMYE TiICBIYyBaHHS CHHTAKCHUCY, € Intellisense — 11e 3aranpHui
TepMiH I pi3HOMAHITHHX (YHKIIH pemaryBaHHS KOXy, 30KpeMma:
3aBepIIeHHS Koy, iH(opMaIlist Ipo mapaMeTpH, CIIUCKH WICHIB THITY
TONIO, & TAaKOX ICHYE€ BEJIMYE3HA KUIBKICTh PI3HUX IUIATIHIB 1
PO3IINPEHB.

Visual Studio for Mac — e mosroninza IDE. Sk 1 B Windows
po3poOHMKH, mo Nomooassore Mac OS, MalTh 3MOry KpoK 3a
KPOKOM 00MpaTH HEOoOXiZHI MapaMeTpH Ul CTBOPEHHS MPOEKTY. Y
Visual Studio for Mac € Bci mepeBaru cydacHoi IDE. Takox € B
HasBHOCTI Oe3komToBHa Community Bepcist.

JetBrains Rider takox € moBHouinHoto IDE. Ane ii mepeBaroro €
Te, Mo BoHa mpamroe Ha Windows, Mac 1 Linux. [Ipaitoe mBuako,
nigTpuMye Oinpmricte BuaiB NET mpoekTiB, 30KkpeMa AECKTOIHI,
web-3actocynku, O6i0miorekd, mixrpumye Unity i Xamarin Ta,
3BuyaiiHo, .NET Core. Henomikom € Te, 110 1aHa cepeaa po3poOKH €
IUIATHOIO.

IV. BucHOBKH

VY crarri Oyno [JOBEAEHO MOXJIMBICTH KpocmuiaTdopMHOL
pO3pOOKH  MpOrpaMHOro  3abe3rmedeHHs  3acobamu .NET,
MATBEPDKEHO akTyadbHiCTh HOBOI TexHonorii .NET — .NET Core.
Bymu posrnsHyTi HaWOIMBIN MOMYNSApHI Ta 3pYy4HI 1HCTPYMEHTH
po3po0Ku TporpaMHOTO 3a0e3MeUeHHs Uil Pi3HUX OIepaliitHuX
cucreM. Pob6oTa MOke BUKOPHCTOBYBATHCH po3poOoHuKamu min .NET
miatpopMy, sAKi  BHpIIMIM  3afiHATHCS  KpocIuiaThopMHOIO
po3pobkoro. Afpke y crtaTTi HaBeAeHi ocBHOBHI epeBaru .NET Core.

Cnucok sukopucmanux oxcepesn

[11 URL: hitp:/lib.mdpu.org.ua/e-book/vstup/LA.htm - Jlexmis 4.
KpocmnardopmuicTs. Buau i TUIM cyyacHUX MOB IIPOrpaMyBaHHSI.

[2]  URL: https://dou.ua/lenta/articles/net-core/ - .NET Core: Bo3moxHOCTH
U IICPCIICKTUBBI.

[3] URL: https://dic.academic.ru/dic.nsf/ruwiki/989950 -
Kpoccmnarpopmennoe I10.

[4] URL: https://arstechnica.com/information-technology/2016/06/net-
core-1-0-released-now-officially-supported-by-red-hat/ - .NET Core 1.0
released, now officially supported by Red Hat. Ars Technica. Condé
Nast (27 utonst 2016).

[5] URL: https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-
net-core-1-1/ - .NET Blog (16 November 2016). Announcing .NET
Core 1.1.

[6] URL: https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-
net-core-2-0/ - .NET Blog (14 August 2017). Announcing .NET Core
2.0

[71 URL: https://docs.microsoft.com/ru-ru/dotnet/standard/choosing-core-
framework-server - Choosing between .NET Core and .NET
Framework for server apps

[8] URL: https://www.visualstudio.com/downloads/ - Downloads | IDE,
Code, & Team Foundation Server | Visual Studio



http://lib.mdpu.org.ua/e-book/vstup/L4.htm
https://dou.ua/lenta/articles/net-core/
https://dic.academic.ru/dic.nsf/ruwiki/989950
https://arstechnica.com/information-technology/2016/06/net-core-1-0-released-now-officially-supported-by-red-hat/
https://arstechnica.com/information-technology/2016/06/net-core-1-0-released-now-officially-supported-by-red-hat/
https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/
https://docs.microsoft.com/ru-ru/dotnet/standard/choosing-core-framework-server
https://docs.microsoft.com/ru-ru/dotnet/standard/choosing-core-framework-server
https://www.visualstudio.com/downloads/

Ways of data exchange between sessions and scenes
In Unity3D

Yulia Chukhrii

Computer Systems and Networks Department
Scientific adviser:PhD, assoc prof Chebanyuk O.V.
Software Engineering Department
Institute of Computer and Informational Technologies
National Aviation University
Kyiv, Ukraine

Abstract—Ways of data transmission between game session
and scenes are considered in this paper. Such ways as
serialization, player preferences, and external data storage
are discussed.

Keywords—Unity3D, game development, Serialization,
DataBase, dreamlo, PlayerPrefs

1. INTRODUCTION

Modern video games have a large amount of data, such
as score, time, place where the player stopped and other. So
much information requires effective and rational approaches
of management of data for saving computer memory and
reducing the weight of game. Each of the methods listed
below represents the ability to manage data to achieve an
optimal game performance.

n. WAYS OF DATA EXCANGE
BETWEEN SESSIONS AND
GAME SCENES IN UNITY3D

A. PlayerPrefs approach

PlayerPrefs is a class in UnityEngine which stores player
preferences and accesses to it. This way is effective to
manage a small volume of data. PlayerPrefs has a key
(PlayerPrefs.HasKey(“ ”)) and the value [1]. The value
which is stored there can be obtained in such ways [3]:

e  PlayerPrefs.GetInt();
o  PlayerPrefs.GetFloat();
e  PlayerPrefs.GetString();
To save a new value the next functions should be used:
e  PlayerPrefs.Setint();
e  PlayerPrefs.SetFloat();
e  PlayerPrefs.SetString();

To delete a key from the preferences the next method
PlayerPrefs.DeleteKey(); is valid. To delete all keys and
values corresponds PlayerPrefs.Delete All().

The example of usage PlayerPrefs is shown on the fig.1.
PlayerPrefs.SetInt (“material”, ApplyChar.counter) receives
a key “material” and a value ApplyChar.counter which is
integer. It saves the properties of the object which was
chosen by pressing “Apply”. Then Application.LoadLevel()
loads the level that has a name “ig” where properties of
chosen object will be delivered.

oid OnMouseDown()

"Apply™)

PlayerPre etInt("m
Application.Loadlevel

", ApplyChar.counter);

Figure 1: Example of usage PlayerPrefs in the method OnMouseDown()

B. Serialization

XML, JSON and BSON: XML is type of data
represented in textual form. XML is able to move data
across the different port, but it required encoding when it
passed over HTTP. This makes data communication more
difficult due to the large size of data messages.

1) JSON (JavaScript Object Notation) is a technique of
representation the data in text form which is human readable
and it can be easy passed through without any message
encoding that makes JSON more convenient to transfer data
between the client and server. Today JSON is highly used
so this format of data is supported by mobile applications
and REST services. However, it is not natively supported by
.NET language such as C# [5]. Therefore it is necessary to
use JSON.NET (a JSON framework for .NET).

2) BSON (Binary JavaScript Object Notation) is a
binary representation of simple data structures, associative



array, called a document. Documents (or objects) consist of
an ordered lists of elements. Each element has a field
name(string), a type and a value. It can store binary data
directly. This eliminates the additional encode overhead but
it gave a slight disadvantage in a space efficiency, because it
has overhead for field names in serialized data.

Built-in features of serialization: Serialization is an
automatic process of transforming data structures into a
format that Unity can store and reconstruct. Some of the
built-in features of Unity use serialization automatically,
such as saving and loading of data, inspector window,
prefabs and instantiation [2].

Saving and loading: Serialization is used to save or load
scenes and assets to or from computer’s hard drive. This
includes data saved in your own scripting API objects, for
example, MonoBehaviour components or ScriptableObjects.

Inspector window: Unity uses serialization to display the
value of GameObject in inspector window but it does not
communicate with the Unity Scripting API when it displays
the values of a field.

Prefabs: Prefabs are serialized data of one or more
GameObjects and components. A Prefab instance contains a
reference to the Prefab source and a list of modifications to
this Prefab. From these two sets of serialized data Unity
Editor instantiates a GameObject during the project build.

Instantiation: When the method Instantiate is called
Unity serialized anything that exist in scenes such as prefabs
and GameObiject. Then Unity creates a new GameObiject in
which data will be deserialized.

Custom serialization: In cases when Unity serializer can
not transform something that should be serialized, the
concept of callbacks (ISerializationCallbackReciever, the
interface in UnityEngine) will be actual. Callbacks allow
hard-to-serialize data to be represented a different format
which Unity can understand [4]. All data should be
transform in Unity-understandable type before it wants to
serialize this. Later, it can be transform into former form.
ISerializationCallbackReciever only works with clases.
Actual public methods for callbacks are:

e OnAfterDeserialize — to receive a callback after
Unity deserializes the object.

e OnBeforeSerialize - to receive a callback before
Unity deserializes the object.

3. Data storage in external resources

One of the ways to storage data in external resources is
an online servers. Dreamlo is one of many representatives of
servers that use a database for storage. The communication,
changes and updates in database are done by HTTP GET
requests using private URL. Dreamlo generates individually
for the user a private, public code and URL which is
necessary to paste in the sample code for Unity (fig.2). To
create an access to the web page and get data from web
server the class WWW is used. There is also possibility to
stream or load a new player data files.

WWW has such methods [6]:
e GetAudioClip - to get an audio data (read only).

e EscapeURL — to escape characters in a string to
ensure they are URL-friendly.

e Dispose — to dispose of WWW object.
WWW has such properties:

e progress — reports a status of download.

e isDone — is the data already downloaded?

e error — to receive an error message if there was an
error during the download.

Codes for Unity Example
Here are just your public and private code so
that you can cut and paste them into the
sample code for Unity.

Private Code (It's lang, get all of it!)

ZJyu99dchkaTyudhoG1y0QF3DOMM

FPublic Code

5abl17d95012b2el 068255440

Figure 2: Example of public and private code generated by dreamlo

. Conclusions

Through the work, the ways of Data exchange between
sessions and game scenes in Unity3D were considered. In
cases when the game has a small amount of data the method
PlayerPref is most appropriate.

When the project has a voluminous data which have to
be transferred from the client to server most quickly or
Unity can not recognize the format of data, the way of
serialization is used.

If the game is multiplayer and has many tables or
leaderboards that require synchronization with external
databases, the method of exchange and storage data on the
web servers is up-to-date.

REFERENCES

[1] J. Hocking, Unity in actions, pp.352, June 2015.

[2] G. Lukosek, Learning C# by Developing Games with Unity 5x, 3rd
ed, pp.230, March 2016.

[3] Unity documentation - PlayerPrefs -
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html.



https://docs.unity3d.com/ScriptReference/PlayerPrefs.html

[4] Unity documentation - Script Serialization - [6] Unity documentation - Scripting API|
https://docs.unity3d.com/Manual/script-Serialization.html. https://docs.unity3d.com/ScriptReference/WWW.html.

[5] Serializing data into XML, JSON and BSON -
http://www.dotnetcurry.com/csharp/1279/serialize-json-data-binary.



https://docs.unity3d.com/Manual/script-Serialization.html
http://www.dotnetcurry.com/csharp/1279/serialize-json-data-binary
https://docs.unity3d.com/ScriptReference/WWW.html

A tool for designing architectural solutions in a cloud
environment

Maksym Chukhrii
Scientific adviser: PhD. Assoc. Prof. Chebanyuk O.V.
Software Engineering Department
Institute of Computer and Informational Technologies
National Aviation University
Kyiv, Ukraine

Abstract — This article describes a proposal of an approach
of transforming requirements described in UML to
infrastructure model and description for different Platform-as-
service (PAAS) and Infrastructure as Service (IAAS) in several
public cloud computing providers.

Keywords—cloud  computing, UML, Platform-as-service
(PAAS), Infrastructure as Service (IAAS), Infrastructure as Code
(1aC), MDE

1. INTRODUCTION

Today pubic cloud computing become major trend in IT
[1]. With Platform-as-service (PAAS), Infrastructure as
Service (IAAS) and Infrastructure as Code (laC) gaining
traction on IT market and mass migration of business in cloud

[2].

Now laC tools allows infrastructure itself to become
defined and managed code [3] which means that it and can be
analyzed, modeled, visualized and generated using standard
notions such as UML and with aid of MDE tools.

n. FORMULATION OF THE
PROBLEM

The modern MDE tools allow to model different aspects of
software architecture.

Now since we can describe infrastructure as code we can
apply MDE methodology to coded infrastructure as well. This
will allow it to effectively analyzed using models.
Unfortunately, there is no such method or transformation of
existing models that will allow to generate infrastructure code
neither there is an way to take existing infrastructure code and
transform it to standard process-able model such as UML.

m. DESCRIPTION OF PROPOSED
METHOD

The proposed method to solve this problem is following.
The system's input data is cloud provider services description
defined in XML format and system description in form of
component model. Having this data, we can perform code

generation for 1oC tools (for example Terraform, Ansible).
The code generator generate code analyze model's
components attributes and compare them to cloud services
described in XML document and generate code using
predefined templates [4], [5].

iv. USED TOOLS

To preform creating and validation of models IBM
Rational Rose is used.

Rational Rose is an object-oriented Unified Modeling
Language (UML) software design tool intended for visual
modeling and component construction of enterprise-level
software applications. In much the same way a theatrical
director blocks out a play, a software designer uses Rational
Rose to visually create (model) the framework for an
application by blocking out classes with actors (stick figures),
use case elements (ovals), objects (rectangles) and
messages/relationships (arrows) in a sequence diagram using
drag-and-drop symbols. Rational Rose documents the diagram
as it is being constructed and then generates code in the
designer's choice of C++, Visual Basic, Java, Oracle8, Corba
or Data Definition Language.

v. CONCLUSIONS

The proposed method can be implemented in existing
MDE tools such as Modellio or EMF and can help to create
more stable and manageable cloud infrastructure.

REFERENCES

[1] Cloud computing: the new frontier of internet computing
ieeexplore.ieee.org/abstract/document/5562494/

[2] Cloud Migration: A Case Study of Migrating an Enterprise IT System to
laa$ - http://ieeexplore.ieee.org/abstract/document/5557962

[3] Infrastructure as Code
https://link.springer.com/chapter/10.1007%2F978-1-4302-4570-4_9

[4] Algorithms for cost- and deadline-constrained provisioning for scientific
workflow ensembles in laaS clouds -
https://www.sciencedirect.com/science/article/pii/S0167739X15000059

[5] Efficient service recommendation system for cloud computing market -
https://dl.acm.org/citation.cfm?id=1656078




The present and future of Android development

Duchkova Krystyna

Scientific curator: Tkachenko O. A.
Software engineering chamber
Institute of computer and Information technologies
Kiev, Ukraine
Kduchkova3108@gmail.com

Annotation — The work is devoted to the consideration of the
problem of flaring android industry as a whole and Android
applications. The work identifies the potential ways for the
development of the industry and the prospects for work for
young professionals.

Keywords—Android; indastry; development; mobile

I.  Introduction to a problem

Nowadays around 1 billion of people are using android in
the world. Android was first launched in the year 2005. The
Android mobile operating system is currently developed by
the Google. Mainly the Android is open source. It can be
installed on devices of various types. The app development is
also becoming a big challenge for the mobile app development
companies in Florida, New York and all over the world as the
mobile operating systems especially the Android has been
continually evolving. With more than 80 percent market share,
Android is the dominant mobile operating system today. It's
running on countless models of smartphones and tablets, as
well as many other devices. Judging by this, one would think
that programming for Android is simple and easy. Or is it?
Problems are everywhere, and Android is not exception [1].

1) Buggy IDEs - have you ever tried to repair your car
with a shovel? Or tried to pick up girls while driving your
grandfather's 40-year old Yugo? In the Android world, we had
an official IDE for Android development - Eclipse, which had
a ton of problems and could drive you mad in 10 minutes. The
Eclipse ADT plugin was just buggy, slow and unfriendly for
more complex projects. We quickly got sick of it and were
praying for a miracle.

2) OS fragmentation - Gingerbread (2.3.7) occupied quite
a market share (at least 15-20 percent) of Android OS
versions. As you already know, Android underwent complete
overhaul with the version 4.0 (Ice Cream Sandwich) - we got
new Ul elements, new APIs for device hardware, new screen
densities... This resulted in us having to be careful to optimize
and program our apps to work well on the new as well ancient
versions of Android. All this greatly affected our development
process and resulted in prolonged development time with
more bugs and crashes.

3) Slow emulators - We need to test our apps on different
Android OS versions and screen dimensions, so we have to

buy at least 20 different Android devices. Sounds crazy? OK,
so we can use emulators. But have you ever tried to use the
default Android emulator? It's so painfully slow that you'll
soon catch yourself counting cars parked in front of your
office while your app is being deployed to your emulator.

4) Ul - Android apps were boring. If you commit
blasphemy and take a look at iOS apps, you will see that they
are full of life and colors. Everything is animated,
transforming, going from left to right, right to left and so on...
Our apps were static, and if we wanted to enrich our UX, the
old Gingerbread would have soon killed all our hopes and
wishes [2].

n. Main part

Android developers need to keep in mind when developing
the android app, the app should be compatible with all latest
devices. Nowadays in the mobile market there are different
models are introduced, it is obvious that the some devices are
outdated. So, when developing apps for those devices, it is
more risky to the developers, so that the developers need to
know changes in that and they should be updated.

Android as stated by Google, the entire Android
environment has changed with the Lollipop. Android Studio is
the new software introduced it has got popular in the market.

The project automation tools that Google introduced for
Android developers helps them to separate their apps into
various parts, assign proper configuration settings, and
increase app's execution speed [4].

Material design is becoming more popular with Lollipop,
which is added in the design of the Ul of the operating system.
It fully redefines the user experience. It shows the complete
mission and vision it has about the future Android user
experience, as stated by Google.

Now the smart watches are introduced to the market. It is
also helpful for android development professionals. They can
show their agility in smart watch app development with the
help of the advanced operating system. Android is added with
the latest features to support smart watch app development. In
the future the smartphones may be used to operate the
television, refrigerator, washing machine, which the android
already has tried and tested for the applications in the future.



The Android application development is ready to move with
newer technology and devices.

The flexibility and the scalability as well as the wide range
of compatibility that the Android offers shall remain positive.
The developers are getting the new way of working with
smartphones with the help of internet. The Android is
becoming more popular, and the Android is fully prepared to
handle the future technology innovations [3].

m. Conclusions

Android is becoming more and more popular in the global
market and it has introduced new features and adopting the
new technologies to attract more and more existing and new
customers. It has given the lot of opportunities to Android
developers. Android Development is having a brighter future
by supporting the upcoming technologies.

A lot has changed in the past few years for Android. It has
evolved from a simple OS for smartphones and is now
powering many other devices. Time will tell what will become
of it.

References

[1] Kroah-Hartman, Greg (December 9, 2010). "Android and the Linux
kernel community". Linux kernel monkey log. Retrieved June 20, 2017.

[2] Paul, Ryan (February 24, 2009). "Dream(sheep++): A developer's
introduction to Google Android". Ars Technica. Condé Nast. Retrieved
June 20, 2017.

[3] "Google's Android OS: Past, Present, and Future". PhoneArena. August
18, 2011. Retrieved March 12, 2017.

[4] "What Are The Major Changes That Android Made To The Linux
Kernel?". Forbes. May 13, 2013. Retrieved June 20,2017.



